Xiaoguang Li (Xidian University, Purdue University), Zitao Li (Alibaba Group (U.S.) Inc.), Ninghui Li (Purdue University), Wenhai Sun (Purdue University, West Lafayette, USA)

Recent studies reveal that local differential privacy (LDP) protocols are vulnerable to data poisoning attacks where an attacker can manipulate the final estimate on the server by leveraging the characteristics of LDP and sending carefully crafted data from a small fraction of controlled local clients. This vulnerability raises concerns regarding the robustness and reliability of LDP in hostile environments.

In this paper, we conduct a systematic investigation of the robustness of state-of-the-art LDP protocols for numerical attributes, i.e., categorical frequency oracles (CFOs) with binning and consistency, and distribution reconstruction. We evaluate protocol robustness through an attack-driven approach and propose new metrics for cross-protocol attack gain measurement. The results indicate that Square Wave and CFO-based protocols in the textit{Server} setting are more robust against the attack compared to the CFO-based protocols in the textit{User} setting. Our evaluation also unfolds new relationships between LDP security and its inherent design choices. We found that the hash domain size in local-hashing-based LDP has a profound impact on protocol robustness beyond the well-known effect on utility. Further, we propose a textit{zero-shot attack detection} by leveraging the rich reconstructed distribution information. The experiment show that our detection significantly improves the existing methods and effectively identifies data manipulation in challenging scenarios.

View More Papers

Non-intrusive and Unconstrained Keystroke Inference in VR Platforms via...

Tao Ni (City University of Hong Kong), Yuefeng Du (City University of Hong Kong), Qingchuan Zhao (City University of Hong Kong), Cong Wang (City University of Hong Kong)

Read More

Space Cybersecurity Testbed: Fidelity Framework, Example Implementation, and Characterization

Jose Luis Castanon Remy, Caleb Chang, Ekzhin Ear, Shouhuai Xu (University of Colorado Colorado Springs (UCCS))

Read More

SecuWear: Secure Data Sharing Between Wearable Devices

Sujin Han (KAIST) Diana A. Vasile (Nokia Bell Labs), Fahim Kawsar (Nokia Bell Labs, University of Glasgow), Chulhong Min (Nokia Bell Labs)

Read More

HADES Attack: Understanding and Evaluating Manipulation Risks of Email...

Ruixuan Li (Tsinghua University), Chaoyi Lu (Tsinghua University), Baojun Liu (Tsinghua University;Zhongguancun Laboratory), Yunyi Zhang (Tsinghua University), Geng Hong (Fudan University), Haixin Duan (Tsinghua University;Zhongguancun Laboratory), Yanzhong Lin (Coremail Technology Co. Ltd), Qingfeng Pan (Coremail Technology Co. Ltd), Min Yang (Fudan University), Jun Shao (Zhejiang Gongshang University)

Read More