Xiaoguang Li (Xidian University, Purdue University), Zitao Li (Alibaba Group (U.S.) Inc.), Ninghui Li (Purdue University), Wenhai Sun (Purdue University, West Lafayette, USA)

Recent studies reveal that local differential privacy (LDP) protocols are vulnerable to data poisoning attacks where an attacker can manipulate the final estimate on the server by leveraging the characteristics of LDP and sending carefully crafted data from a small fraction of controlled local clients. This vulnerability raises concerns regarding the robustness and reliability of LDP in hostile environments.

In this paper, we conduct a systematic investigation of the robustness of state-of-the-art LDP protocols for numerical attributes, i.e., categorical frequency oracles (CFOs) with binning and consistency, and distribution reconstruction. We evaluate protocol robustness through an attack-driven approach and propose new metrics for cross-protocol attack gain measurement. The results indicate that Square Wave and CFO-based protocols in the textit{Server} setting are more robust against the attack compared to the CFO-based protocols in the textit{User} setting. Our evaluation also unfolds new relationships between LDP security and its inherent design choices. We found that the hash domain size in local-hashing-based LDP has a profound impact on protocol robustness beyond the well-known effect on utility. Further, we propose a textit{zero-shot attack detection} by leveraging the rich reconstructed distribution information. The experiment show that our detection significantly improves the existing methods and effectively identifies data manipulation in challenging scenarios.

View More Papers

LLM-xApp: A Large Language Model Empowered Radio Resource Management...

Xingqi Wu (University of Michigan-Dearborn), Junaid Farooq (University of Michigan-Dearborn), Yuhui Wang (University of Michigan-Dearborn), Juntao Chen (Fordham University)

Read More

SketchFeature: High-Quality Per-Flow Feature Extractor Towards Security-Aware Data Plane

Sian Kim (Ewha Womans University), Seyed Mohammad Mehdi Mirnajafizadeh (Wayne State University), Bara Kim (Korea University), Rhongho Jang (Wayne State University), DaeHun Nyang (Ewha Womans University)

Read More

Privacy-Enhancing Technologies Against Physical-Layer and Link-Layer Device Tracking: Trends,...

Apolline Zehner (Universite libre de Bruxelles), Iness Ben Guirat (Universite libre de Bruxelles), Jan Tobias Muhlberg (Universite libre de Bruxelles)

Read More

TZ-DATASHIELD: Automated Data Protection for Embedded Systems via Data-Flow-Based...

Zelun Kong (University of Texas at Dallas), Minkyung Park (University of Texas at Dallas), Le Guan (University of Georgia), Ning Zhang (Washington University in St. Louis), Chung Hwan Kim (University of Texas at Dallas)

Read More