Teemu Rytilahti (Ruhr University Bochum), Thorsten Holz (Ruhr University Bochum)

Typical port scanning approaches do not achieve a full coverage of all devices connected to the Internet as not all devices are directly reachable via a public (IPv4) address: due to IP address space exhaustion, firewalls, and many other reasons, an end-to-end connectivity is not achieved in today’s Internet anymore. Especially Network Address Translation (NAT) is widely deployed in practice and it has the side effect of “hiding” devices from being scanned. Some protocols, however, require end-to-end connectivity to function properly and hence several methods were developed in the past to enable crossing network borders.

In this paper, we explore how an attacker can take advantage of such application-layer middlebox protocols to access devices hidden behind these gateways. More specifically, we investigate different methods for identifying such devices by (ab)using legitimate protocol features. We categorize the available protocols into two classes: First, there are persistent protocols that are typically port forwarding based. Such protocols are used to allow local network devices to open and forward external ports to them. Second, there are non-persistent protocols that are typically proxy-based to route packets between network edges, such as HTTP and SOCKS proxies. We perform a comprehensive, Internet-wide analysis to obtain an accurate overview of how prevalent and widespread such protocols are in practice. Our results indicate that hundreds of thousands of hosts are vulnerable for different types of attacks, e. g., we detect over 400.000 hosts that are likely vulnerable for attacks involving the UPnP IGD protocol. More worrisome, we find empirical evidence that attackers are already actively exploiting such protocols in the wild to access devices located behind NAT gateways. Amongst other findings, we discover that at least 24 % of all open Internet proxies are misconfigured to allow accessing hosts on non-routable addresses.

View More Papers

NoJITsu: Locking Down JavaScript Engines

Taemin Park (University of California, Irvine), Karel Dhondt (imec-DistriNet, KU Leuven), David Gens (University of California, Irvine), Yeoul Na (University of California, Irvine), Stijn Volckaert (imec-DistriNet, KU Leuven), Michael Franz (University of California, Irvine, USA)

Read More

Precisely Characterizing Security Impact in a Flood of Patches...

Qiushi Wu (University of Minnesota), Yang He (University of Minnesota), Stephen McCamant (University of Minnesota), Kangjie Lu (University of Minnesota)

Read More

The Attack of the Clones Against Proof-of-Authority

Parinya Ekparinya (University of Sydney), Vincent Gramoli (University of Sydney and CSIRO-Data61), Guillaume Jourjon (CSIRO-Data61)

Read More

Strong Authentication without Temper-Resistant Hardware and Application to Federated...

Zhenfeng Zhang (Chinese Academy of Sciences, University of Chinese Academy of Sciences, and The Joint Academy of Blockchain Innovation), Yuchen Wang (Chinese Academy of Sciences and University of Chinese Academy of Sciences), Kang Yang (State Key Laboratory of Cryptology)

Read More