Matthew Gregoire (University of North Carolina at Chapel Hill), Margaret Pierce (University of North Carolina at Chapel Hill), Saba Eskandarian (University of North Carolina at Chapel Hill)

The fast-paced development and deployment of private messaging applications demands mechanisms to protect against the concomitant potential for abuse. While widely used end-to-end encrypted (E2EE) messaging systems have deployed mechanisms for users to verifiably report abusive messages without compromising the privacy of unreported messages, abuse reporting schemes for systems that additionally protect message metadata are still in their infancy. Existing solutions either focus on a relatively small portion of the design space or incur much higher communication and computation costs than their E2EE brethren.

This paper introduces new abuse reporting mechanisms that work for any private messaging system based on onion encryption. This includes low-latency systems that employ heuristic or opportunistic mixing of user traffic, as well as schemes based on mixnets. Along the way, we show that design decisions and abstractions that are well-suited to the E2EE setting may actually impede security and performance improvements in the metadata-hiding setting. We also explore stronger threat models for abuse reporting and moderation not explored in prior work, showing where prior work falls short and how to strengthen both our scheme and others'—including deployed E2EE messaging platforms—to achieve higher levels of security.

We implement a prototype of our scheme and find that it outperforms the best known solutions in this setting by well over an order of magnitude for each step of the message delivery and reporting process, with overheads almost matching those of message franking techniques used by E2EE encrypted messaging apps today.

View More Papers

How Different Tokenization Algorithms Impact LLMs and Transformer Models...

Ahmed Mostafa, Raisul Arefin Nahid, Samuel Mulder (Auburn University)

Read More

Vision: Comparison of AI-assisted Policy Development Between Professionals and...

Rishika Thorat (Purdue University), Tatiana Ringenberg (Purdue University)

Read More

CASPR: Context-Aware Security Policy Recommendation

Lifang Xiao (Institute of Information Engineering, Chinese Academy of Sciences), Hanyu Wang (Institute of Information Engineering, Chinese Academy of Sciences), Aimin Yu (Institute of Information Engineering, Chinese Academy of Sciences), Lixin Zhao (Institute of Information Engineering, Chinese Academy of Sciences), Dan Meng (Institute of Information Engineering, Chinese Academy of Sciences)

Read More

LADDER: Multi-Objective Backdoor Attack via Evolutionary Algorithm

Dazhuang Liu (Delft University of Technology), Yanqi Qiao (Delft University of Technology), Rui Wang (Delft University of Technology), Kaitai Liang (Delft University of Technology), Georgios Smaragdakis (Delft University of Technology)

Read More