Haotian Chi (Temple University), Qiang Zeng (University of South Carolina), Xiaojiang Du (Temple University), Lannan Luo (University of South Carolina)

Internet of Things (IoT) platforms enable users to deploy home automation applications. Meanwhile, privacy issues arise as large amounts of sensitive device data flow out to IoT platforms. Most of the data flowing out to a platform actually do not trigger automation actions, while homeowners currently have no control once devices are bound to the platform. We present PFirewall, a customizable data-flow control system to enhance the privacy of IoT platform users. PFirewall automatically generates data-minimization policies, which only disclose minimum amount of data to fulfill automation. In addition, PFirewall provides interfaces for homeowners to customize individual privacy preferences by defining user-specified policies. To enforce these policies, PFirewall transparently intervenes and mediates the communication between IoT devices and the platform, without modifying the platform, IoT devices, or hub. Evaluation results on four real-world testbeds show that PFirewall reduces IoT data sent to the platform by 97% without impairing home automation, and effectively mitigates user-activity inference/tracking attacks and other privacy risks.

View More Papers

“Lose Your Phone, Lose Your Identity”: Exploring Users’ Perceptions...

Michael Lutaaya, Hala Assal, Khadija Baig, Sana Maqsood, Sonia Chiasson (Carleton University)

Read More

SymQEMU: Compilation-based symbolic execution for binaries

Sebastian Poeplau (EURECOM and Code Intelligence), Aurélien Francillon (EURECOM)

Read More

Screen Gleaning: Receiving and Interpreting Pixels by Eavesdropping on...

Zhuoran Liu, Léo Weissbart, Dirk Lauret (Radboud University)

Read More

Debunking Exposure Notification

Serge Vaudenay, EPFL, Switzerland

Read More