Qinhan Tan (Zhejiang University), Zhihua Zeng (Zhejiang University), Kai Bu (Zhejiang University), Kui Ren (Zhejiang University)

Cache conflicts due to deterministic memory-to-cache mapping have long been exploited to leak sensitive information such as secret keys. While randomized mapping is fully investigated for L1 caches, it still remains unresolved about how to secure a much larger last-level cache (LLC). Recent solutions periodically change the mapping strategy to disrupt the crafting of conflicted addresses, which is a critical attack procedure to exploit cache conflicts. Remapping, however, increases both miss rate and access latency. We present PhantomCache for securing an LLC with remapping-free randomized mapping. We propose a localized randomization technique to bound randomized mapping of a memory address within only a limited number of cache sets. The small randomization space offers fast set search over an LLC in a memory access. The intrinsic randomness still suffices to obfuscate conflicts and disrupt efficient exploitation of conflicted addresses. We evaluate PhantomCache against an attacker exploring the state-of-the-art attack with linear-complexity. To secure an 8-bank 16~MB 16-way LLC, PhantomCache confines randomization space of an address within 8 sets and brings only 0.5% performance degradation and 0.5% storage overhead per cache line, which are 3x and 9x more efficient than the state-of-the-art solutions. Moreover, PhantomCache is solely an architectural solution and requires no software change.

View More Papers

Strong Authentication without Temper-Resistant Hardware and Application to Federated...

Zhenfeng Zhang (Chinese Academy of Sciences, University of Chinese Academy of Sciences, and The Joint Academy of Blockchain Innovation), Yuchen Wang (Chinese Academy of Sciences and University of Chinese Academy of Sciences), Kang Yang (State Key Laboratory of Cryptology)

Read More

Detecting Probe-resistant Proxies

Sergey Frolov (University of Colorado Boulder), Jack Wampler (University of Colorado Boulder), Eric Wustrow (University of Colorado Boulder)

Read More

Demo #4: Attacking Tesla Model X’s Autopilot Using Compromised...

Ben Nassi (Ben-Gurion University of the Negev), Yisroel Mirsky (Ben-Gurion University of the Negev, Georgia Tech), Dudi Nassi, Raz Ben Netanel (Ben-Gurion University of the Negev), Oleg Drokin (Independent Researcher), and Yuval Elovici (Ben-Gurion University of the Negev) Best Demo Award Winner ($300 cash prize)!

Read More