Mitziu Echeverria (The University of Iowa), Zeeshan Ahmed (The University of Iowa), Bincheng Wang (The University of Iowa), M. Fareed Arif (The University of Iowa), Syed Rafiul Hussain (Pennsylvania State University), Omar Chowdhury (The University of Iowa)

End-user-devices in the current cellular ecosystem are prone to many different vulnerabilities across different generations and protocol layers. Fixing these vulnerabilities retrospectively can be expensive, challenging, or just infeasible. A pragmatic approach for dealing with such a diverse set of vulnerabilities would be to identify attack attempts at runtime on the device side, and thwart them with mitigating and corrective actions. Towards this goal, in the paper we propose a general and extendable approach called PHOENIX for identifying n-day cellular network control-plane vulnerabilities as well as dangerous practices of network operators from the device vantage point. PHOENIX monitors the device-side cellular network traffic for performing signature-based unexpected behavior detection through lightweight runtime verification techniques. Signatures in PHOENIX can be manually-crafted by a cellular network security expert or can be automatically synthesized using an optional component of PHOENIX , which reduces the signature synthesis problem to the language learning from the informant problem. Based on the corrective actions that are available to PHOENIX when an undesired behavior is detected, different instantiations of PHOENIX are possible: a full-fledged defense when deployed inside a baseband processor; a user warning system when deployed as a mobile application; a probe for identifying attacks in the wild. One such instantiation of PHOENIX was able to identify all 15 representative n-day vulnerabilities and unsafe practices of 4G LTE networks considered in our evaluation with a high packet processing speed (∼68000 packets/second) while inducing only a moderate amount of energy overhead (∼4mW).

View More Papers

Demo #4: Attacking Tesla Model X’s Autopilot Using Compromised...

Ben Nassi (Ben-Gurion University of the Negev), Yisroel Mirsky (Ben-Gurion University of the Negev, Georgia Tech), Dudi Nassi, Raz Ben Netanel (Ben-Gurion University of the Negev), Oleg Drokin (Independent Researcher), and Yuval Elovici (Ben-Gurion University of the Negev) Best Demo Award Winner ($300 cash prize)!

Read More

NetPlier: Probabilistic Network Protocol Reverse Engineering from Message Traces

Yapeng Ye (Purdue University), Zhuo Zhang (Purdue University), Fei Wang (Purdue University), Xiangyu Zhang (Purdue University), Dongyan Xu (Purdue University)

Read More

To Err.Is Human: Characterizing the Threat of Unintended URLs...

Beliz Kaleli (Boston University), Brian Kondracki (Stony Brook University), Manuel Egele (Boston University), Nick Nikiforakis (Stony Brook University), Gianluca Stringhini (Boston University)

Read More

KUBO: Precise and Scalable Detection of User-triggerable Undefined Behavior...

Changming Liu (Northeastern University), Yaohui Chen (Facebook Inc.), Long Lu (Northeastern University)

Read More