Kostas Drakonakis (FORTH, Greece), Panagiotis Ilia (FORTH, Greece), Sotiris Ioannidis (FORTH, Greece), Jason Polakis (University of Illinois at Chicago, USA)

The exposure of location data constitutes a significant privacy risk to users as it can lead to de-anonymization, the inference of sensitive information, and even physical threats. In this paper we present LPAuditor, a tool that conducts a comprehensive evaluation of the privacy loss caused by public location metadata. First, we demonstrate how our system can pinpoint users’ key locations at an unprecedented granularity by identifying their actual postal addresses. Our evaluation on Twitter data highlights the effectiveness of our techniques which outperform prior approaches by 18.9%-91.6% for homes and 8.7%-21.8% for workplaces. Next we present a novel exploration of automated private information inference that uncovers “sensitive” locations that users have visited (pertaining to health, religion, and sex/nightlife). We find that location metadata can provide additional context to tweets and thus lead to the exposure of private information that might not match the users’ intentions.

We further explore the mismatch between user actions and information exposure and find that older versions of the official Twitter apps follow a privacy-invasive policy of including precise GPS coordinates in the metadata of tweets that users have geotagged at a coarse-grained level (e.g., city). The implications of this exposure are further exacerbated by our finding that users are considerably privacy-cautious in regards to exposing precise location data. When users can explicitly select what location data is published, there is a 94.6% reduction in tweets with GPS coordinates. As part of current efforts to give users more control over their data, LPAuditor can be adopted by major services and offered as an auditing tool that informs users about sensitive information they (indirectly) expose through location metadata.

View More Papers

Cleaning Up the Internet of Evil Things: Real-World Evidence...

Orcun Cetin (Delft University of Technology), Carlos Gañán (Delft University of Technology), Lisette Altena (Delft University of Technology), Takahiro Kasama (National Institute of Information and Communications Technology), Daisuke Inoue (National Institute of Information and Communications Technology), Kazuki Tamiya (Yokohama National University), Ying Tie (Yokohama National University), Katsunari Yoshioka (Yokohama National University), Michel van Eeten (Delft…

Read More

DIAT: Data Integrity Attestation for Resilient Collaboration of Autonomous...

Tigist Abera (Technische Universität Darmstadt), Raad Bahmani (Technische Universität Darmstadt), Ferdinand Brasser (Technische Universität Darmstadt), Ahmad Ibrahim (Technische Universität Darmstadt), Ahmad-Reza Sadeghi (Technische Universität Darmstadt), Matthias Schunter (Intel Labs)

Read More

Graph-based Security and Privacy Analytics via Collective Classification with...

Binghui Wang (Iowa State University), Jinyuan Jia (Iowa State University), Neil Zhenqiang Gong (Iowa State University)

Read More

Enemy At the Gateways: Censorship-Resilient Proxy Distribution Using Game...

Milad Nasr (University of Massachusetts Amherst), Sadegh Farhang (Pennsylvania State University), Amir Houmansadr (University of Massachusetts Amherst), Jens Grossklags (Technical University of Munich)

Read More