Andrick Adhikari (University of Denver), Sanchari Das (University of Denver), Rinku Dewri (University of Denver)

The effectiveness of natural language privacy policies continues to be clouded by concerns surrounding their readability, ambiguity, and accessibility. Despite multiple design alternatives proposed over the years, natural language policies are still the primary format for organizations to communicate privacy practices to users. Current NLP techniques are often drawn towards generating high-level overviews, or specialized towards a single aspect of consumer privacy communication; the flexibility to apply them for multiple tasks is missing. To this aid, we present PolicyPulse, an information extraction pipeline designed to process privacy policies into usable formats. PolicyPulse employs a specialized XLNet classifier, and leverages a BERT-based model for semantic role labeling to extract phrases from policy sentences, while maintaining the semantic relations between predicates and their arguments. Our classification model was trained on 13,946 manually annotated semantic frames, and achieves a F1-score of 0.97 on identifying privacy practices communicated using clauses within a sentence. We emphasize the versatility of PolicyPulse through prototype applications to support requirement-driven policy presentations, question-answering systems, and privacy preference checking.

View More Papers

ReDAN: An Empirical Study on Remote DoS Attacks against...

Xuewei Feng (Tsinghua University), Yuxiang Yang (Tsinghua University), Qi Li (Tsinghua University), Xingxiang Zhan (Zhongguancun Lab), Kun Sun (George Mason University), Ziqiang Wang (Southeast University), Ao Wang (Southeast University), Ganqiu Du (China Software Testing Center), Ke Xu (Tsinghua University)

Read More

A Multifaceted Study on the Use of TLS and...

Ka Fun Tang (The Chinese University of Hong Kong), Che Wei Tu (The Chinese University of Hong Kong), Sui Ling Angela Mak (The Chinese University of Hong Kong), Sze Yiu Chau (The Chinese University of Hong Kong)

Read More

BULKHEAD: Secure, Scalable, and Efficient Kernel Compartmentalization with PKS

Yinggang Guo (State Key Laboratory for Novel Software Technology, Nanjing University; University of Minnesota), Zicheng Wang (State Key Laboratory for Novel Software Technology, Nanjing University), Weiheng Bai (University of Minnesota), Qingkai Zeng (State Key Laboratory for Novel Software Technology, Nanjing University), Kangjie Lu (University of Minnesota)

Read More

Power-Related Side-Channel Attacks using the Android Sensor Framework

Mathias Oberhuber (Graz University of Technology), Martin Unterguggenberger (Graz University of Technology), Lukas Maar (Graz University of Technology), Andreas Kogler (Graz University of Technology), Stefan Mangard (Graz University of Technology)

Read More