Andrick Adhikari (University of Denver), Sanchari Das (University of Denver), Rinku Dewri (University of Denver)

The effectiveness of natural language privacy policies continues to be clouded by concerns surrounding their readability, ambiguity, and accessibility. Despite multiple design alternatives proposed over the years, natural language policies are still the primary format for organizations to communicate privacy practices to users. Current NLP techniques are often drawn towards generating high-level overviews, or specialized towards a single aspect of consumer privacy communication; the flexibility to apply them for multiple tasks is missing. To this aid, we present PolicyPulse, an information extraction pipeline designed to process privacy policies into usable formats. PolicyPulse employs a specialized XLNet classifier, and leverages a BERT-based model for semantic role labeling to extract phrases from policy sentences, while maintaining the semantic relations between predicates and their arguments. Our classification model was trained on 13,946 manually annotated semantic frames, and achieves a F1-score of 0.97 on identifying privacy practices communicated using clauses within a sentence. We emphasize the versatility of PolicyPulse through prototype applications to support requirement-driven policy presentations, question-answering systems, and privacy preference checking.

View More Papers

Reinforcement Unlearning

Dayong Ye (University of Technology Sydney), Tianqing Zhu (City University of Macau), Congcong Zhu (City University of Macau), Derui Wang (CSIRO’s Data61), Kun Gao (University of Technology Sydney), Zewei Shi (CSIRO’s Data61), Sheng Shen (Torrens University Australia), Wanlei Zhou (City University of Macau), Minhui Xue (CSIRO's Data61)

Read More

PQConnect: Automated Post-Quantum End-to-End Tunnels

Daniel J. Bernstein (University of Illinois at Chicago and Academia Sinica), Tanja Lange (Eindhoven University of Technology amd Academia Sinica), Jonathan Levin (Academia Sinica and Eindhoven University of Technology), Bo-Yin Yang (Academia Sinica)

Read More

MALintent: Coverage Guided Intent Fuzzing Framework for Android

Ammar Askar (Georgia Institute of Technology), Fabian Fleischer (Georgia Institute of Technology), Christopher Kruegel (University of California, Santa Barbara), Giovanni Vigna (University of California, Santa Barbara), Taesoo Kim (Georgia Institute of Technology)

Read More

Ctrl+Alt+Deceive: Quantifying User Exposure to Online Scams

Platon Kotzias (Norton Research Group, BforeAI), Michalis Pachilakis (Norton Research Group, Computer Science Department University of Crete), Javier Aldana Iuit (Norton Research Group), Juan Caballero (IMDEA Software Institute), Iskander Sanchez-Rola (Norton Research Group), Leyla Bilge (Norton Research Group)

Read More