Sourav Das (University of Illinois at Urbana-Champaign), Zhuolun Xiang (Aptos), Ling Ren (University of Illinois at Urbana-Champaign)

The $q$-Strong Diffie-Hellman~($q$-SDH) parameters are foundational to efficient constructions of many cryptographic primitives such as zero-knowledge succinct non-interactive argument of knowledge, polynomial/vector commitments, verifiable secret sharing, and randomness beacon. The only existing method to generate these parameters securely is highly sequential, requires strong network synchrony assumptions, and has very high communication and computation cost. For example, to generate parameters for any given $q$, each party incurs a communication cost of $Omega(nq)$ and requires $Omega(n)$ rounds. Here $n$ is the number of parties in the secure multiparty computation protocol. Since $q$ is typically large, i.e., on the order of billions, the cost is highly prohibitive.

In this paper, we present a distributed protocol to generate $q$-SDH parameters in an asynchronous network. In a network of $n$ parties, our protocol tolerates up to one-third of malicious parties. Each party incurs a communication cost of $O(q + n^2log q)$ and the protocol finishes in $O(log q + log n)$ expected rounds. We provide a rigorous security analysis of our protocol. We implement our protocol and evaluate it with up to 128 geographically distributed parties. Our evaluation illustrates that our protocol is highly scalable and results in a 2-6$times$ better runtime and 4-13$times$ better per-party bandwidth usage compared to the state-of-the-art synchronous protocol for generating $q$-SDH parameters.

View More Papers

Crafter: Facial Feature Crafting against Inversion-based Identity Theft on...

Shiming Wang (Shanghai Jiao Tong University), Zhe Ji (Shanghai Jiao Tong University), Liyao Xiang (Shanghai Jiao Tong University), Hao Zhang (Shanghai Jiao Tong University), Xinbing Wang (Shanghai Jiao Tong University), Chenghu Zhou (Chinese Academy of Sciences), Bo Li (Hong Kong University of Science and Technology)

Read More

EnclaveFuzz: Finding Vulnerabilities in SGX Applications

Liheng Chen (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences; Institute for Network Science and Cyberspace of Tsinghua University), Zheming Li (Institute for Network Science and Cyberspace of Tsinghua University), Zheyu Ma (Institute for Network Science and Cyberspace of Tsinghua University), Yuan Li (Tsinghua University),…

Read More

EM Eye: Characterizing Electromagnetic Side-channel Eavesdropping on Embedded Cameras

Yan Long (University of Michigan), Qinhong Jiang (Zhejiang University), Chen Yan (Zhejiang University), Tobias Alam (University of Michigan), Xiaoyu Ji (Zhejiang University), Wenyuan Xu (Zhejiang University), Kevin Fu (Northeastern University)

Read More

Heterogeneous Graph Pre-training Based Model for Secure and Efficient...

Xurui Li (Fudan University), Xin Shan (Bank of Shanghai), Wenhao Yin (Shanghai Saic Finance Co., Ltd)

Read More