Pietro Borrello (Sapienza University of Rome), Andrea Fioraldi (EURECOM), Daniele Cono D'Elia (Sapienza University of Rome), Davide Balzarotti (Eurecom), Leonardo Querzoni (Sapienza University of Rome), Cristiano Giuffrida (Vrije Universiteit Amsterdam)

Coverage-guided fuzzers expose bugs by progressively mutating testcases to drive execution to new program locations. Code coverage is currently the most effective and popular exploration feedback. For several bugs, though, also how execution reaches a buggy program location may matter: for those, only tracking what code a testcase exercises may lead fuzzers to overlook interesting program states. Unfortunately, context-sensitive coverage tracking comes with an inherent state explosion problem. Existing attempts to implement context-sensitive coverage-guided fuzzers struggle with it, experiencing non-trivial issues for precision (due to coverage collisions) and performance (due to context tracking and queue/map explosion).

In this paper, we show that a much more effective approach to context-sensitive fuzzing is possible. First, we propose function cloning as a backward-compatible instrumentation primitive to enable precise (i.e., collision-free) context-sensitive coverage tracking. Then, to tame the state explosion problem, we argue to account for contextual information only when a fuzzer explores contexts selected as promising. We propose a prediction scheme to identify one pool of such contexts: we analyze the data-flow diversity of the incoming argument values at call sites, exposing to the fuzzer a contextually refined clone of the callee if the latter sees incoming abstract objects that its uses at other sites do not.

Our work shows that, by applying function cloning to program regions that we predict to benefit from context-sensitivity, we can overcome the aforementioned issues while preserving, and even improving, fuzzing effectiveness. On the FuzzBench suite, our approach largely outperforms state-of-the-art coverage-guided fuzzing embodiments, unveiling more and different bugs without incurring explosion or other apparent inefficiencies. On these heavily tested subjects, we also found 8 enduring security issues in 5 of them, with 6 CVE identifiers issued.

View More Papers

IRRedicator: Pruning IRR with RPKI-Valid BGP Insights

Minhyeok Kang (Seoul National University), Weitong Li (Virginia Tech), Roland van Rijswijk-Deij (University of Twente), Ted "Taekyoung" Kwon (Seoul National University), Taejoong Chung (Virginia Tech)

Read More

Parrot-Trained Adversarial Examples: Pushing the Practicality of Black-Box Audio...

Rui Duan (University of South Florida), Zhe Qu (Central South University), Leah Ding (American University), Yao Liu (University of South Florida), Zhuo Lu (University of South Florida)

Read More

An Experimental Study on Attacking Homogeneous Averaging Processes via...

Olsan Ozbay (Dept. ECE, University of Maryland), Yuntao Liu (ISR, University of Maryland), Ankur Srivastava (Dept. ECE, ISR, University of Maryland)

Read More

Aligning Confidential Computing with Cloud-native ML Platforms

Angelo Ruocco, Chris Porter, Claudio Carvalho, Daniele Buono, Derren Dunn, Hubertus Franke, James Bottomley, Marcio Silva, Mengmei Ye, Niteesh Dubey, Tobin Feldman-Fitzthum (IBM Research)

Read More