Pietro Borrello (Sapienza University of Rome), Andrea Fioraldi (EURECOM), Daniele Cono D'Elia (Sapienza University of Rome), Davide Balzarotti (Eurecom), Leonardo Querzoni (Sapienza University of Rome), Cristiano Giuffrida (Vrije Universiteit Amsterdam)

Coverage-guided fuzzers expose bugs by progressively mutating testcases to drive execution to new program locations. Code coverage is currently the most effective and popular exploration feedback. For several bugs, though, also how execution reaches a buggy program location may matter: for those, only tracking what code a testcase exercises may lead fuzzers to overlook interesting program states. Unfortunately, context-sensitive coverage tracking comes with an inherent state explosion problem. Existing attempts to implement context-sensitive coverage-guided fuzzers struggle with it, experiencing non-trivial issues for precision (due to coverage collisions) and performance (due to context tracking and queue/map explosion).

In this paper, we show that a much more effective approach to context-sensitive fuzzing is possible. First, we propose function cloning as a backward-compatible instrumentation primitive to enable precise (i.e., collision-free) context-sensitive coverage tracking. Then, to tame the state explosion problem, we argue to account for contextual information only when a fuzzer explores contexts selected as promising. We propose a prediction scheme to identify one pool of such contexts: we analyze the data-flow diversity of the incoming argument values at call sites, exposing to the fuzzer a contextually refined clone of the callee if the latter sees incoming abstract objects that its uses at other sites do not.

Our work shows that, by applying function cloning to program regions that we predict to benefit from context-sensitivity, we can overcome the aforementioned issues while preserving, and even improving, fuzzing effectiveness. On the FuzzBench suite, our approach largely outperforms state-of-the-art coverage-guided fuzzing embodiments, unveiling more and different bugs without incurring explosion or other apparent inefficiencies. On these heavily tested subjects, we also found 8 enduring security issues in 5 of them, with 6 CVE identifiers issued.

View More Papers

It’s Standards’ Time to Shine: Insights for IoT Cybersecurity...

Dr. Michael J. Fagan, National Institute of Standards and Technology

Read More

Vision: Towards Fully Shoulder-Surfing Resistant and Usable Authentication for...

Tobias Länge (Karlsruhe Institute of Technology), Philipp Matheis (Karlsruhe Institute of Technology), Reyhan Düzgün (Ruhr University Bochum), Melanie Volkamer (Karlsruhe Institute of Technology), Peter Mayer (Karlsruhe Institute of Technology, University of Southern Denmark)

Read More

Crafter: Facial Feature Crafting against Inversion-based Identity Theft on...

Shiming Wang (Shanghai Jiao Tong University), Zhe Ji (Shanghai Jiao Tong University), Liyao Xiang (Shanghai Jiao Tong University), Hao Zhang (Shanghai Jiao Tong University), Xinbing Wang (Shanghai Jiao Tong University), Chenghu Zhou (Chinese Academy of Sciences), Bo Li (Hong Kong University of Science and Technology)

Read More

UntrustIDE: Exploiting Weaknesses in VS Code Extensions

Elizabeth Lin (North Carolina State University), Igibek Koishybayev (North Carolina State University), Trevor Dunlap (North Carolina State University), William Enck (North Carolina State University), Alexandros Kapravelos (North Carolina State University)

Read More