Syed Mahbub Hafiz (University of California, Davis), Chitrabhanu Gupta (University of California, Davis), Warren Wnuck (University of California, Davis), Brijesh Vora (University of California, Davis), Chen-Nee Chuah (University of California, Davis)

An essential part of ensuring privacy for internet service users is to protect what data they access so that the database host cannot infer sensitive information (e.g., political affiliation, sexual orientation, etc.) from the query pattern to exploit it or share it with third parties. Often, database users submit aggregate queries (e.g., SUM, MEAN, etc.) with searching and filtering constraints to extract statistically meaningful information from a database by seeking the privacy of its query's sensitive values and database interactions. Private information retrieval (PIR), a privacy-preserving cryptographic tool, solves a simplified version of this problem by hiding the database item that a client accesses. Most PIR protocols require the client to know the exact row index of the intended database item, which cannot support the complicated aggregation-based statistical query in a similar setting. Some works in the PIR space contain keyword searching and SQL-like queries, but most need multiple interactions between the PIR client and PIR servers. Some schemes support searching SQL-like expressive queries in a single round but fail to enable aggregate queries. These schemes are the main focus of this paper. To bridge the gap, we have built a general-purpose novel information-theoretic PIR (IT-PIR) framework that permits a user to fetch the aggregated result, hiding all sensitive sections of the complex query from the hosting PIR server in a single round of interaction. In other words, the server will not know which records contribute to the aggregation. We then evaluate the feasibility of our protocol for both benchmarking and real-world application settings. For instance, in a complex aggregate query to the Twitter microblogging database of $1$ million tweets, our protocol takes $0.014$ seconds for a PIR server to generate the result when the user is interested in one of ~$3k$ user handles. In contrast, for a much-simplified task, not an aggregate but a positional query, Goldberg's regular IT-PIR (Oakland 2007) takes $1.13$ seconds. For all possible user handles, $300k$, it takes equal time compared to the regular IT-PIR. This example shows that complicated aggregate queries through our framework do not incur additional overhead if not less, compared to the conventional query.

View More Papers

Enhance Stealthiness and Transferability of Adversarial Attacks with Class...

Hui Xia (Ocean University of China), Rui Zhang (Ocean University of China), Zi Kang (Ocean University of China), Shuliang Jiang (Ocean University of China), Shuo Xu (Ocean University of China)

Read More

CrowdGuard: Federated Backdoor Detection in Federated Learning

Phillip Rieger (Technical University of Darmstadt), Torsten Krauß (University of Würzburg), Markus Miettinen (Technical University of Darmstadt), Alexandra Dmitrienko (University of Würzburg), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More

Why People Still Fall for Phishing Emails: An Empirical...

Asangi Jayatilaka (Centre for Research on Engineering Software Technologies (CREST), The University of Adelaide, School of Computing Technologies, RMIT University), Nalin Asanka Gamagedara Arachchilage (School of Computer Science, The University of Auckland), M. Ali Babar (Centre for Research on Engineering Software Technologies (CREST), The University of Adelaide)

Read More

Vision: “AccessFormer”: Feedback-Driven Access Control Policy

Sakuna Harinda Jayasundara, Nalin Asanka Gamagedara Arachchilage, Giovanni Russello (University of Auckland)

Read More