Jens Müller (Ruhr University Bochum), Dominik Noss (Ruhr University Bochum), Christian Mainka (Ruhr University Bochum), Vladislav Mladenov (Ruhr University Bochum), Jörg Schwenk (Ruhr University Bochum)

PDF is the de-facto standard for document exchange. It is common to open PDF files from potentially untrusted sources such as email attachments or downloaded from the Internet. In this work, we perform an in-depth analysis of the capabilities of malicious PDF documents. Instead of focusing on implementation bugs, we abuse legitimate features of the PDF standard itself by systematically identifying dangerous paths in the PDF file structure. These dangerous paths lead to attacks that we categorize into four generic classes: (1) Denial-of-Service attacks affecting the host that processes the document. (2) Information disclosure attacks leaking personal data out of the victim’s computer. (3) Data manipulation on the victim’s system. (4) Code execution on the victim’s machine. An evaluation of 28 popular PDF processing applications shows that 26 of them are vulnerable at least one attack. Finally, we propose a methodology to protect against attacks based on PDF features systematically.

View More Papers

A First Look at Scams on YouTube

Elijah Bouma-Sims, Bradley Reaves (North Carolina State University)

Read More

FlowLens: Enabling Efficient Flow Classification for ML-based Network Security...

Diogo Barradas (INESC-ID, Instituto Superior Técnico, Universidade de Lisboa), Nuno Santos (INESC-ID, Instituto Superior Técnico, Universidade de Lisboa), Luis Rodrigues (INESC-ID, Instituto Superior Técnico, Universidade de Lisboa), Salvatore Signorello (LASIGE, Faculdade de Ciências, Universidade de Lisboa), Fernando M. V. Ramos (INESC-ID, Instituto Superior Técnico, Universidade de Lisboa), André Madeira (INESC-ID, Instituto Superior Técnico, Universidade de…

Read More

Oblivious DNS over HTTPS (ODoH): A Practical Privacy Enhancement...

Sudheesh Singanamalla*†, Suphanat Chunhapanya*, Jonathan Hoyland*, Marek Vavruša*, Tanya Verma*, Peter Wu*, Marwan Fayed*, Kurtis Heimerl†, Nick Sullivan*, Christopher Wood* (*Cloudflare Inc. †University of Washington)

Read More