Derui Wang (CSIRO's Data61), Minhui Xue (CSIRO's Data61), Bo Li (The University of Chicago), Seyit Camtepe (CSIRO's Data61), Liming Zhu (CSIRO's Data61)

The exploitation of publicly accessible data has led to escalating concerns regarding data privacy and intellectual property (IP) breaches in the age of artificial intelligence. To safeguard both data privacy and IP-related domain knowledge, efforts have been undertaken to render shared data unlearnable for unauthorized models in the wild. Existing methods apply empirically optimized perturbations to the data in the hope of disrupting the correlation between the inputs and the corresponding labels such that the data samples are converted into Unlearnable Examples (UEs). Nevertheless, the absence of mechanisms to verify the robustness of UEs against uncertainty in unauthorized models and their training procedures engenders several under-explored challenges. First, it is hard to quantify the unlearnability of UEs against unauthorized adversaries from different runs of training, leaving the soundness of the defense in obscurity. Particularly, as a prevailing evaluation metric, empirical test accuracy faces generalization errors and may not plausibly represent the quality of UEs. This also leaves room for attackers, as there is no rigid guarantee of the maximal test accuracy achievable by attackers. Furthermore, we find that a simple recovery attack can restore the clean-task performance of the classifiers trained on UEs by slightly perturbing the learned weights. To mitigate the aforementioned problems, in this paper, we propose a mechanism for certifying the so-called $(q, eta)$-Learnability of an unlearnable dataset via parametric smoothing. A lower certified $(q, eta)$-Learnability indicates a more robust and effective protection over the dataset. Concretely, we 1) improve the tightness of certified $(q, eta)$-Learnability and 2) design Provably Unlearnable Examples (PUEs) which have reduced $(q, eta)$-Learnability. According to experimental results, PUEs demonstrate both decreased certified $(q, eta)$-Learnability and enhanced empirical robustness compared to existing UEs. Compared to the competitors on classifiers with uncertainty in parameters, PUEs reduce at most $18.9%$ of certified $(q, eta)$-Learnability on ImageNet and $54.4%$ of the empirical test accuracy score on CIFAR-100. Our source code is available at https://github.com/NeuralSec/certified-data-learnability.

View More Papers

Detecting Ransomware Despite I/O Overhead: A Practical Multi-Staged Approach

Christian van Sloun (RWTH Aachen University), Vincent Woeste (RWTH Aachen University), Konrad Wolsing (RWTH Aachen University & Fraunhofer FKIE), Jan Pennekamp (RWTH Aachen University), Klaus Wehrle (RWTH Aachen University)

Read More

Hitchhiking Vaccine: Enhancing Botnet Remediation With Remote Code Deployment...

Runze Zhang (Georgia Institute of Technology), Mingxuan Yao (Georgia Institute of Technology), Haichuan Xu (Georgia Institute of Technology), Omar Alrawi (Georgia Institute of Technology), Jeman Park (Kyung Hee University), Brendan Saltaformaggio (Georgia Institute of Technology)

Read More

Evaluating LLMs Towards Automated Assessment of Privacy Policy Understandability

Keika Mori (Deloitte Tohmatsu Cyber LLC, Waseda University), Daiki Ito (Deloitte Tohmatsu Cyber LLC), Takumi Fukunaga (Deloitte Tohmatsu Cyber LLC), Takuya Watanabe (Deloitte Tohmatsu Cyber LLC), Yuta Takata (Deloitte Tohmatsu Cyber LLC), Masaki Kamizono (Deloitte Tohmatsu Cyber LLC), Tatsuya Mori (Waseda University, NICT, RIKEN AIP)

Read More