Shichen Zhang (Michigan State University), Qijun Wang (Michigan State University), Maolin Gan (Michigan State University), Zhichao Cao (Michigan State University), Huacheng Zeng (Michigan State University)

This paper aims to design and implement a radio device capable of detecting a person's handwriting through a wall. Although there is extensive research on radio frequency (RF) based human activity recognition, this task is particularly challenging due to the textit{through-wall} requirement and the textit{tiny-scale} handwriting movements. To address these challenges, we present RadSee---a 6 GHz frequency modulated continuous wave (FMCW) radar system designed for detecting handwriting content behind a wall. RadSee is realized through a joint hardware and software design. On the hardware side, RadSee features a 6 GHz FMCW radar device equipped with two custom-designed, high-gain patch antennas. These two antennas provide a sufficient link power budget, allowing RadSee to "see'' through most walls with a small transmission power. On the software side, RadSee extracts effective phase features corresponding to the writer's hand movements and employs a bidirectional LSTM (BiLSTM) model with an attention mechanism to classify handwriting letters. As a result, RadSee can detect millimeter-level handwriting movements and recognize most letters based on their unique phase patterns. Additionally, it is resilient to interference from other moving objects and in-band radio devices. We have built a prototype of RadSee and evaluated its performance in various scenarios. Extensive experimental results demonstrate that RadSee achieves 75% letter recognition accuracy when victims write 62 random letters, and 87% word recognition accuracy when they write articles.

View More Papers

Vision: Comparison of AI-assisted Policy Development Between Professionals and...

Rishika Thorat (Purdue University), Tatiana Ringenberg (Purdue University)

Read More

Rondo: Scalable and Reconfiguration-Friendly Randomness Beacon

Xuanji Meng (Tsinghua University), Xiao Sui (Shandong University), Zhaoxin Yang (Tsinghua University), Kang Rong (Blockchain Platform Division,Ant Group), Wenbo Xu (Blockchain Platform Division,Ant Group), Shenglong Chen (Blockchain Platform Division,Ant Group), Ying Yan (Blockchain Platform Division,Ant Group), Sisi Duan (Tsinghua University)

Read More

BinEnhance: An Enhancement Framework Based on External Environment Semantics...

Yongpan Wang (Institute of Information Engineering Chinese Academy of Sciences & University of Chinese Academy of Sciences, China), Hong Li (Institute of Information Engineering Chinese Academy of Sciences & University of Chinese Academy of Sciences, China), Xiaojie Zhu (King Abdullah University of Science and Technology, Thuwal, Saudi Arabia), Siyuan Li (Institute of Information Engineering Chinese…

Read More

Work-in-Progress: Detecting Browser-in-the-Browser Attacks from Their Behaviors and DOM...

Ryusei Ishikawa, Soramichi Akiyama, and Tetsutaro Uehara (Ritsumeikan University)

Read More