Dzung Pham (University of Massachusetts Amherst), Shreyas Kulkarni (University of Massachusetts Amherst), Amir Houmansadr (University of Massachusetts Amherst)

Federated learning has emerged as a promising privacy-preserving solution for machine learning domains that rely on user interactions, particularly recommender systems and online learning to rank. While there has been substantial research on the privacy of traditional federated learning, little attention has been paid to the privacy properties of these interaction-based settings. In this work, we show that users face an elevated risk of having their private interactions reconstructed by the central server when the server can control the training features of the items that users interact with. We introduce RAIFLE, a novel optimization-based attack framework where the server actively manipulates the features of the items presented to users to increase the success rate of reconstruction. Our experiments with federated recommendation and online learning-to-rank scenarios demonstrate that RAIFLE is significantly more powerful than existing reconstruction attacks like gradient inversion, achieving high performance consistently in most settings. We discuss the pros and cons of several possible countermeasures to defend against RAIFLE in the context of interaction-based federated learning. Our code is open-sourced at https://github.com/dzungvpham/raifle.

View More Papers

Rethink Custom Transformers for Binary Analysis

Heng Yin, Professor, Department of Computer Science and Engineering, University of California, Riverside

Read More

Do (Not) Follow the White Rabbit: Challenging the Myth...

Soheil Khodayari (CISPA Helmholtz Center for Information Security), Kai Glauber (Saarland University), Giancarlo Pellegrino (CISPA Helmholtz Center for Information Security)

Read More

TWINFUZZ: Differential Testing of Video Hardware Acceleration Stacks

Matteo Leonelli (CISPA Helmholtz Center for Information Security), Addison Crump (CISPA Helmholtz Center for Information Security), Meng Wang (CISPA Helmholtz Center for Information Security), Florian Bauckholt (CISPA Helmholtz Center for Information Security), Keno Hassler (CISPA Helmholtz Center for Information Security), Ali Abbasi (CISPA Helmholtz Center for Information Security), Thorsten Holz (CISPA Helmholtz Center for Information…

Read More