Philipp Schindler (SBA Research), Aljosha Judmayer (SBA Research), Markus Hittmeir (SBA Research), Nicholas Stifter (SBA Research, TU Wien), Edgar Weippl (Universität Wien)

Generating randomness collectively has been a long standing problem in distributed computing. It plays a critical role not only in the design of state-of-the-art Byzantine fault-tolerant (BFT) and blockchain protocols, but also for a range of applications far beyond this field. We present RandRunner, a random beacon protocol with a unique set of guarantees that targets a realistic system model. Our design avoids the necessity of a (BFT) consensus protocol and its accompanying high complexity and communication overhead. We achieve this by introducing a novel extension to verifiable delay functions (VDFs) in the RSA setting that does not require a trusted dealer or distributed key generation (DKG) and only relies on well studied cryptographic assumptions. This design allows RandRunner to tolerate adversarial or failed leaders while guaranteeing safety and liveness of the protocol despite possible periods of asynchrony.

View More Papers

GALA: Greedy ComputAtion for Linear Algebra in Privacy-Preserved Neural...

Qiao Zhang (Old Dominion University), Chunsheng Xin (Old Dominion University), Hongyi Wu (Old Dominion University)

Read More

On Building the Data-Oblivious Virtual Environment

Tushar Jois (Johns Hopkins University), Hyun Bin Lee, Christopher Fletcher, Carl A. Gunter (University of Illinois at Urbana-Champaign)

Read More

Safer Illinois and RokWall: Privacy Preserving University Health Apps...

Vikram Sharma Mailthody, James Wei, Nicholas Chen, Mohammad Behnia, Ruihao Yao, Qihao Wang, Vedant Agarwal, Churan He, Lijian Wang, Leihao Chen, Amit Agarwal, Edward Richter, Wen-mei Hwu, and Christopher Fletcher (University of Illinois at Urbana-Champaign); Jinjun Xiong (IBM); Andrew Miller and Sanjay Patel (University of Illinois at Urbana-Champaign)

Read More