Philipp Schindler (SBA Research), Aljosha Judmayer (SBA Research), Markus Hittmeir (SBA Research), Nicholas Stifter (SBA Research, TU Wien), Edgar Weippl (Universität Wien)

Generating randomness collectively has been a long standing problem in distributed computing. It plays a critical role not only in the design of state-of-the-art Byzantine fault-tolerant (BFT) and blockchain protocols, but also for a range of applications far beyond this field. We present RandRunner, a random beacon protocol with a unique set of guarantees that targets a realistic system model. Our design avoids the necessity of a (BFT) consensus protocol and its accompanying high complexity and communication overhead. We achieve this by introducing a novel extension to verifiable delay functions (VDFs) in the RSA setting that does not require a trusted dealer or distributed key generation (DKG) and only relies on well studied cryptographic assumptions. This design allows RandRunner to tolerate adversarial or failed leaders while guaranteeing safety and liveness of the protocol despite possible periods of asynchrony.

View More Papers

IoTSafe: Enforcing Safety and Security Policy with Real IoT...

Wenbo Ding (Clemson University), Hongxin Hu (University at Buffalo), Long Cheng (Clemson University)

Read More

Demo #5: Securing Heavy Vehicle Diagnostics

Jeremy Daily, David Nnaji, and Ben Ettlinger (Colorado State University)

Read More

Data Analytics and Expert Judgment in Time of Crisis:...

Igor Linkov, PhD Senior Science and Technology Manager, US Army Engineer Research and Development Center; Senior Data Analyst (on detail), FEMA/HHS R1 COVID Task Force; Adjunct Professor, Carnegie Mellon University

Read More

WATSON: Abstracting Behaviors from Audit Logs via Aggregation of...

Jun Zeng (National University of Singapore), Zheng Leong Chua (Independent Researcher), Yinfang Chen (National University of Singapore), Kaihang Ji (National University of Singapore), Zhenkai Liang (National University of Singapore), Jian Mao (Beihang University)

Read More