Maximilian von Tschirschnitz (Technical University of Munich), Ludwig Peuckert (Technical University of Munich), Moritz Buhl (Technical University of Munich), Jens Grossklags (Technical University of Munich)

Previous works have shown that Bluetooth is susceptible to so-called Method Confusion attacks. These attacks manipulate devices into conducting conflicting key establishment methods, leading to compromised keys. An increasing amount of security-sensitive applications, like payment terminals, organizational asset tracking systems and conferencing technologies now rely on the availability of a technology like Bluetooth.
It is thus an urgent goal to find and validate a mitigation to these attacks or to provide an appropriate replacement for Bluetooth without introducing additional requirements
that exclude device or user groups.
Despite recent solution proposals, existing threat models overlook certain attack vectors or dismiss important scenarios and consequently suffer under new variants of Method Confusion.

We first propose an extended threat model that appreciates the root issue of Method Confusion and also considers multiple pairing attempts and one-sided pairings as security risks.
Evaluating existing solution proposals with our threat model, we are able to detect known Method Confusion attacks, and identify new vulnerabilities in previous solution proposals.
We demonstrate the viability of these attacks on real-world Bluetooth devices. We further discuss a novel solution approach offering enhanced security, while maintaining compatibility with existing hardware and Bluetooth user behavior.
We conduct a formal security proof of our proposal and implement it on commonplace Bluetooth hardware, positioning it as the currently most promising update proposal for Bluetooth.

View More Papers

RadSee: See Your Handwriting Through Walls Using FMCW Radar

Shichen Zhang (Michigan State University), Qijun Wang (Michigan State University), Maolin Gan (Michigan State University), Zhichao Cao (Michigan State University), Huacheng Zeng (Michigan State University)

Read More

The Skeleton Keys: A Large Scale Analysis of Credential...

Yizhe Shi (Fudan University), Zhemin Yang (Fudan University), Kangwei Zhong (Fudan University), Guangliang Yang (Fudan University), Yifan Yang (Fudan University), Xiaohan Zhang (Fudan University), Min Yang (Fudan University)

Read More

Space Cybersecurity Testbed: Fidelity Framework, Example Implementation, and Characterization

Jose Luis Castanon Remy, Caleb Chang, Ekzhin Ear, Shouhuai Xu (University of Colorado Colorado Springs (UCCS))

Read More

Target-Centric Firmware Rehosting with Penguin

Andrew Fasano, Zachary Estrada, Luke Craig, Ben Levy, Jordan McLeod, Jacques Becker, Elysia Witham, Cole DiLorenzo, Caden Kline, Ali Bobi (MIT Lincoln Laboratory), Dinko Dermendzhiev (Georgia Institute of Technology), Tim Leek (MIT Lincoln Laboratory), William Robertson (Northeastern University)

Read More