Maximilian von Tschirschnitz (Technical University of Munich), Ludwig Peuckert (Technical University of Munich), Moritz Buhl (Technical University of Munich), Jens Grossklags (Technical University of Munich)

Previous works have shown that Bluetooth is susceptible to so-called Method Confusion attacks. These attacks manipulate devices into conducting conflicting key establishment methods, leading to compromised keys. An increasing amount of security-sensitive applications, like payment terminals, organizational asset tracking systems and conferencing technologies now rely on the availability of a technology like Bluetooth.
It is thus an urgent goal to find and validate a mitigation to these attacks or to provide an appropriate replacement for Bluetooth without introducing additional requirements
that exclude device or user groups.
Despite recent solution proposals, existing threat models overlook certain attack vectors or dismiss important scenarios and consequently suffer under new variants of Method Confusion.

We first propose an extended threat model that appreciates the root issue of Method Confusion and also considers multiple pairing attempts and one-sided pairings as security risks.
Evaluating existing solution proposals with our threat model, we are able to detect known Method Confusion attacks, and identify new vulnerabilities in previous solution proposals.
We demonstrate the viability of these attacks on real-world Bluetooth devices. We further discuss a novel solution approach offering enhanced security, while maintaining compatibility with existing hardware and Bluetooth user behavior.
We conduct a formal security proof of our proposal and implement it on commonplace Bluetooth hardware, positioning it as the currently most promising update proposal for Bluetooth.

View More Papers

A New PPML Paradigm for Quantized Models

Tianpei Lu (The State Key Laboratory of Blockchain and Data Security, Zhejiang University), Bingsheng Zhang (The State Key Laboratory of Blockchain and Data Security, Zhejiang University), Xiaoyuan Zhang (The State Key Laboratory of Blockchain and Data Security, Zhejiang University), Kui Ren (The State Key Laboratory of Blockchain and Data Security, Zhejiang University)

Read More

Silence False Alarms: Identifying Anti-Reentrancy Patterns on Ethereum to...

Qiyang Song (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences), Heqing Huang (Institute of Information Engineering, Chinese Academy of Sciences), Xiaoqi Jia (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences), Yuanbo Xie (Institute of Information…

Read More

“I’m 73, you can’t expect me to have multiple...

Ashley Sheil (Munster Technological University), Jacob Camilleri (Munster Technological University), Michelle O Keeffe (Munster Technological University), Melanie Gruben (Munster Technological University), Moya Cronin (Munster Technological University) and Hazel Murray (Munster Technological University)

Read More

SIGuard: Guarding Secure Inference with Post Data Privacy

Xinqian Wang (RMIT University), Xiaoning Liu (RMIT University), Shangqi Lai (CSIRO Data61), Xun Yi (RMIT University), Xingliang Yuan (University of Melbourne)

Read More