Maximilian von Tschirschnitz (Technical University of Munich), Ludwig Peuckert (Technical University of Munich), Moritz Buhl (Technical University of Munich), Jens Grossklags (Technical University of Munich)

Previous works have shown that Bluetooth is susceptible to so-called Method Confusion attacks. These attacks manipulate devices into conducting conflicting key establishment methods, leading to compromised keys. An increasing amount of security-sensitive applications, like payment terminals, organizational asset tracking systems and conferencing technologies now rely on the availability of a technology like Bluetooth.
It is thus an urgent goal to find and validate a mitigation to these attacks or to provide an appropriate replacement for Bluetooth without introducing additional requirements
that exclude device or user groups.
Despite recent solution proposals, existing threat models overlook certain attack vectors or dismiss important scenarios and consequently suffer under new variants of Method Confusion.

We first propose an extended threat model that appreciates the root issue of Method Confusion and also considers multiple pairing attempts and one-sided pairings as security risks.
Evaluating existing solution proposals with our threat model, we are able to detect known Method Confusion attacks, and identify new vulnerabilities in previous solution proposals.
We demonstrate the viability of these attacks on real-world Bluetooth devices. We further discuss a novel solution approach offering enhanced security, while maintaining compatibility with existing hardware and Bluetooth user behavior.
We conduct a formal security proof of our proposal and implement it on commonplace Bluetooth hardware, positioning it as the currently most promising update proposal for Bluetooth.

View More Papers

Blackbox Fuzzing of Distributed Systems with Multi-Dimensional Inputs and...

Yonghao Zou (Beihang University and Peking University), Jia-Ju Bai (Beihang University), Zu-Ming Jiang (ETH Zurich), Ming Zhao (Arizona State University), Diyu Zhou (Peking University)

Read More

Can Public IP Blocklists Explain Internet Radiation?

Simone Cossaro (University of Trieste), Damiano Ravalico (University of Trieste), Rodolfo Vieira Valentim (University of Turin), Martino Trevisan (University of Trieste), Idilio Drago (University of Turin)

Read More

YuraScanner: Leveraging LLMs for Task-driven Web App Scanning

Aleksei Stafeev (CISPA Helmholtz Center for Information Security), Tim Recktenwald (CISPA Helmholtz Center for Information Security), Gianluca De Stefano (CISPA Helmholtz Center for Information Security), Soheil Khodayari (CISPA Helmholtz Center for Information Security), Giancarlo Pellegrino (CISPA Helmholtz Center for Information Security)

Read More

DRAGON: Predicting Decompiled Variable Data Types with Learned Confidence...

Caleb Stewart, Rhonda Gaede, Jeffrey Kulick (University of Alabama in Huntsville)

Read More