Stefano Calzavara (Università Ca' Foscari Venezia), Tobias Urban (Institute for Internet Security and Ruhr University Bochum), Dennis Tatang (Ruhr University Bochum), Marius Steffens (CISPA Helmholtz Center for Information Security), Ben Stock (CISPA Helmholtz Center for Information Security)

Over the years, browsers have adopted an ever-increasing number of client-enforced security policies deployed by means of HTTP headers. Such mechanisms are fundamental for web application security, and usually deployed on a per-page basis. This, however, enables inconsistencies, as different pages within the same security boundaries (in form of origins or sites) can express conflicting security requirements. In this paper, we formalize inconsistencies for cookie security attributes, CSP, and HSTS, and then quantify the magnitude and impact of inconsistencies at scale by crawling 15,000 popular sites. We show numerous sites endanger their own security by omission or misconfiguration of the aforementioned mechanisms, which lead to unnecessary exposure to XSS, cookie theft and HSTS deactivation. We then use our data to analyse to which extent the recent *Origin Policy* proposal can fix the problem of inconsistencies. Unfortunately, we conclude that the current Origin Policy design suffers from major shortcomings which limit its practical applicability to address security inconsistencies, while catering to the need of real-world sites. Based on these insights, we propose Site Policy, an extension of Origin Policy designed to overcome the shortcomings of Origin Policy and to make any insecurity explicit.

View More Papers

Demo #2: Sequential Attacks on Kalman Filter-Based Forward Collision...

Yuzhe Ma, Jon Sharp, Ruizhe Wang, Earlence Fernandes, and Jerry Zhu (University of Wisconsin–Madison)

Read More

ROV++: Improved Deployable Defense against BGP Hijacking

Reynaldo Morillo (University of Connecticut), Justin Furuness (University of Connecticut), Cameron Morris (University of Connecticut), James Breslin (University of Connecticut), Amir Herzberg (University of Connecticut), Bing Wang (University of Connecticut)

Read More

Evading Voltage-Based Intrusion Detection on Automotive CAN

Rohit Bhatia (Purdue University), Vireshwar Kumar (Indian Institute of Technology Delhi), Khaled Serag (Purdue University), Z. Berkay Celik (Purdue University), Mathias Payer (EPFL), Dongyan Xu (Purdue University)

Read More