Asbat El Khairi (University of Twente), Marco Caselli (Siemens AG), Andreas Peter (University of Oldenburg), Andrea Continella (University of Twente)

Despite its detection capabilities against previously unseen threats, anomaly detection suffers from critical limitations, which often prevent its deployment in real-world settings. In fact, anomaly-based intrusion detection systems rely on comprehensive pre-established baselines for effectively identifying suspicious activities. Unfortunately, prior research showed that these baselines age and gradually lose their effectiveness over time, especially in dynamic deployments such as microservices-based environments, where the concept of “normality” is frequently redefined due to shifting operational conditions. This scenario reinforces the need for periodic retraining to uphold optimal performance — a process that proves challenging, particularly in the context of security applications.

We propose a novel, training-less approach to monitoring microservices-based environments. Our system, REPLICAWATCHER, observes the behavior of identical container instances (i.e., replicas) and detects anomalies without requiring prior training. Our key insight is that replicas, adopted for fault tolerance or scalability reasons, execute analogous tasks and exhibit similar behavioral patterns, which allow anomalous containers to stand out as a notable deviation from their corresponding replicas, thereby serving as a crucial indicator of security threats. The results of our experimental evaluation show that our approach is resilient against normality shifts and maintains its effectiveness without the necessity for retraining. Besides, despite not relying on a training phase, REPLICAWATCHER performs comparably to state-of-the-art, training-based solutions, achieving an average precision of 91.08% and recall of 98.35%.

View More Papers

Compromising Industrial Processes using Web-Based Programmable Logic Controller Malware

Ryan Pickren (Georgia Institute of Technology), Tohid Shekari (Georgia Institute of Technology), Saman Zonouz (Georgia Institute of Technology), Raheem Beyah (Georgia Institute of Technology)

Read More

Exploring Phishing Threats through QR Codes in Naturalistic Settings

Filipo Sharevski (DePaul University), Mattia Mossano, Maxime Fabian Veit, Gunther Schiefer, Melanie Volkamer (Karlsruhe Institute of Technology)

Read More

A Cross-Verification Approach with Publicly Available Map for Detecting...

Takami Sato, Ningfei Wang (University of California, Irvine), Yueqiang Cheng (NIO Security Research), Qi Alfred Chen (University of California, Irvine)

Read More

BreakSPF: How Shared Infrastructures Magnify SPF Vulnerabilities Across the...

Chuhan Wang (Tsinghua University), Yasuhiro Kuranaga (Tsinghua University), Yihang Wang (Tsinghua University), Mingming Zhang (Zhongguancun Laboratory), Linkai Zheng (Tsinghua University), Xiang Li (Tsinghua University), Jianjun Chen (Tsinghua University; Zhongguancun Laboratory), Haixin Duan (Tsinghua University; Quan Cheng Lab; Zhongguancun Laboratory), Yanzhong Lin (Coremail Technology Co. Ltd), Qingfeng Pan (Coremail Technology Co. Ltd)

Read More