Linkai Zheng (Tsinghua University), Xiang Li (Tsinghua University), Chuhan Wang (Tsinghua University), Run Guo (Tsinghua University), Haixin Duan (Tsinghua University; Quancheng Laboratory), Jianjun Chen (Tsinghua University; Zhongguancun Laboratory), Chao Zhang (Tsinghua University; Zhongguancun Laboratory), Kaiwen Shen (Tsinghua University)

Content Delivery Networks (CDNs) are ubiquitous middleboxes designed to enhance the performance of hosted websites and shield them from various attacks. Numerous notable studies show that CDNs modify a client's request when forwarding it to the original server. Multiple inconsistencies in this forwarding operation have been found to potentially result in security vulnerabilities like DoS attacks. Nonetheless, existing research lacks a systematic approach to studying CDN forwarding request inconsistencies.

In this work, we present ReqsMiner, an innovative fuzzing framework developed to discover previously unexamined inconsistencies in CDN forwarding requests. The framework uses techniques derived from reinforcement learning to generate valid test cases, even with minimal feedback, and incorporates real field values into the grammar-based fuzzer. With the help of ReqsMiner, we comprehensively test 22 major CDN providers and uncover a wealth of hitherto unstudied CDN forwarding request inconsistencies. Moreover, the application of specialized analyzers enables ReqsMiner to extend its capabilities, evolving into a framework capable of detecting specific types of attacks. By extension, our work further identifies three novel types of HTTP amplification DoS attacks and uncovers 74 new potential DoS vulnerabilities with an amplification factor that can reach up to 2,000 generally, and even 1,920,000 under specific conditions. The vulnerabilities detected were responsibly disclosed to the affected CDN vendors, and mitigation suggestions were proposed. Our work contributes to fortifying CDN security, thereby enhancing their resilience against malicious attacks and preventing misuse.

View More Papers

Compromising Industrial Processes using Web-Based Programmable Logic Controller Malware

Ryan Pickren (Georgia Institute of Technology), Tohid Shekari (Georgia Institute of Technology), Saman Zonouz (Georgia Institute of Technology), Raheem Beyah (Georgia Institute of Technology)

Read More

QUACK: Hindering Deserialization Attacks via Static Duck Typing

Yaniv David (Columbia University), Neophytos Christou (Brown University), Andreas D. Kellas (Columbia University), Vasileios P. Kemerlis (Brown University), Junfeng Yang (Columbia University)

Read More

EyeSeeIdentity: Exploring Natural Gaze Behaviour for Implicit User Identification...

L Yasmeen Abdrabou (Lancaster University), Mariam Hassib (Fortiss Research Institute of the Free State of Bavaria), Shuqin Hu (LMU Munich), Ken Pfeuffer (Aarhus University), Mohamed Khamis (University of Glasgow), Andreas Bulling (University of Stuttgart), Florian Alt (University of the Bundeswehr Munich)

Read More

Aligning Confidential Computing with Cloud-native ML Platforms

Angelo Ruocco, Chris Porter, Claudio Carvalho, Daniele Buono, Derren Dunn, Hubertus Franke, James Bottomley, Marcio Silva, Mengmei Ye, Niteesh Dubey, Tobin Feldman-Fitzthum (IBM Research)

Read More