Kostas Drakonakis (FORTH), Sotiris Ioannidis (Technical University of Crete), Jason Polakis (University of Illinois at Chicago)

Black-box web vulnerability scanners are invaluable for security researchers and practitioners. Despite recent approaches tackling emph{some} of the inherent limitations of scanners, many have not sufficiently evolved alongside web browsers and applications, and often lack the capabilities for handling the inherent challenges of navigating and interacting with modern web applications. Instead of building an alternative scanner that could naturally only incorporate a limited set of the wide range of vulnerability-finding capabilities offered by the multitude of existing scanners, in this paper we propose an entirely different strategy. We present ReScan, a emph{scanner-agnostic} middleware framework that emph{transparently} enhances scanners' capabilities by mediating their interaction with web applications in a realistic and robust manner, using an orchestrated, fully-fledged modern browser. In essence, our framework can be used in conjunction with emph{any} vulnerability scanner, thus allowing users to benefit from the capabilities of existing and future scanners. Our extensible and modular framework includes a collection of enhancement techniques that address limitations and obstacles commonly faced by state-of-the-art scanners. Our experimental evaluation demonstrates that despite the considerable (and expected) overhead introduced by a fully-fledged browser, our framework significantly improves the code coverage achieved by popular scanners (168% on average), resulting in a 66% and 161% increase in the number of reflected and stored XSS vulnerabilities detected, respectively.

View More Papers

OptRand: Optimistically Responsive Reconfigurable Distributed Randomness

Adithya Bhat (Purdue University), Nibesh Shrestha (Rochester Institute of Technology), Aniket Kate (Purdue University), Kartik Nayak (Duke University)

Read More

Post-GDPR Threat Hunting on Android Phones: Dissecting OS-level Safeguards...

Mark Huasong Meng (National University of Singapore), Qing Zhang (ByteDance), Guangshuai Xia (ByteDance), Yuwei Zheng (ByteDance), Yanjun Zhang (The University of Queensland), Guangdong Bai (The University of Queensland), Zhi Liu (ByteDance), Sin G. Teo (Agency for Science, Technology and Research), Jin Song Dong (National University of Singapore)

Read More

Adversarial Robustness for Tabular Data through Cost and Utility...

Klim Kireev (EPFL), Bogdan Kulynych (EPFL), Carmela Troncoso (EPFL)

Read More

Parakeet: Practical Key Transparency for End-to-End Encrypted Messaging

Harjasleen Malvai (UIUC/IC3), Lefteris Kokoris-Kogias (IST Austria), Alberto Sonnino (Mysten Labs), Esha Ghosh (Microsoft Research), Ercan Oztürk (Meta), Kevin Lewi (Meta), Sean Lawlor (Meta)

Read More