Kostas Drakonakis (FORTH), Sotiris Ioannidis (Technical University of Crete), Jason Polakis (University of Illinois at Chicago)

Black-box web vulnerability scanners are invaluable for security researchers and practitioners. Despite recent approaches tackling emph{some} of the inherent limitations of scanners, many have not sufficiently evolved alongside web browsers and applications, and often lack the capabilities for handling the inherent challenges of navigating and interacting with modern web applications. Instead of building an alternative scanner that could naturally only incorporate a limited set of the wide range of vulnerability-finding capabilities offered by the multitude of existing scanners, in this paper we propose an entirely different strategy. We present ReScan, a emph{scanner-agnostic} middleware framework that emph{transparently} enhances scanners' capabilities by mediating their interaction with web applications in a realistic and robust manner, using an orchestrated, fully-fledged modern browser. In essence, our framework can be used in conjunction with emph{any} vulnerability scanner, thus allowing users to benefit from the capabilities of existing and future scanners. Our extensible and modular framework includes a collection of enhancement techniques that address limitations and obstacles commonly faced by state-of-the-art scanners. Our experimental evaluation demonstrates that despite the considerable (and expected) overhead introduced by a fully-fledged browser, our framework significantly improves the code coverage achieved by popular scanners (168% on average), resulting in a 66% and 161% increase in the number of reflected and stored XSS vulnerabilities detected, respectively.

View More Papers

Improving In-vehicle Networks Intrusion Detection Using On-Device Transfer Learning

Sampath Rajapaksha (Robert Gordon University), Harsha Kalutarage (Robert Gordon University), M.Omar Al-Kadri (Birmingham City University), Andrei Petrovski (Robert Gordon University), Garikayi Madzudzo (Horiba Mira Ltd)

Read More

HeteroScore: Evaluating and Mitigating Cloud Security Threats Brought by...

Chongzhou Fang (University of California, Davis), Najmeh Nazari (University of California, Davis), Behnam Omidi (George Mason University), Han Wang (Temple University), Aditya Puri (Foothill High School, Pleasanton, CA), Manish Arora (LearnDesk, Inc.), Setareh Rafatirad (University of California, Davis), Houman Homayoun (University of California, Davis), Khaled N. Khasawneh (George Mason University)

Read More

Preventing SIM Box Fraud Using Device Model Fingerprinting

BeomSeok Oh (KAIST), Junho Ahn (KAIST), Sangwook Bae (KAIST), Mincheol Son (KAIST), Yonghwa Lee (KAIST), Min Suk Kang (KAIST), Yongdae Kim (KAIST)

Read More