Kostas Drakonakis (FORTH), Sotiris Ioannidis (Technical University of Crete), Jason Polakis (University of Illinois at Chicago)

Black-box web vulnerability scanners are invaluable for security researchers and practitioners. Despite recent approaches tackling emph{some} of the inherent limitations of scanners, many have not sufficiently evolved alongside web browsers and applications, and often lack the capabilities for handling the inherent challenges of navigating and interacting with modern web applications. Instead of building an alternative scanner that could naturally only incorporate a limited set of the wide range of vulnerability-finding capabilities offered by the multitude of existing scanners, in this paper we propose an entirely different strategy. We present ReScan, a emph{scanner-agnostic} middleware framework that emph{transparently} enhances scanners' capabilities by mediating their interaction with web applications in a realistic and robust manner, using an orchestrated, fully-fledged modern browser. In essence, our framework can be used in conjunction with emph{any} vulnerability scanner, thus allowing users to benefit from the capabilities of existing and future scanners. Our extensible and modular framework includes a collection of enhancement techniques that address limitations and obstacles commonly faced by state-of-the-art scanners. Our experimental evaluation demonstrates that despite the considerable (and expected) overhead introduced by a fully-fledged browser, our framework significantly improves the code coverage achieved by popular scanners (168% on average), resulting in a 66% and 161% increase in the number of reflected and stored XSS vulnerabilities detected, respectively.

View More Papers

Smarter Contracts: Detecting Vulnerabilities in Smart Contracts with Deep...

Christoph Sendner (University of Wuerzburg), Huili Chen (University of California San Diego), Hossein Fereidooni (Technische Universität Darmstadt), Lukas Petzi (University of Wuerzburg), Jan König (University of Wuerzburg), Jasper Stang (University of Wuerzburg), Alexandra Dmitrienko (University of Wuerzburg), Ahmad-Reza Sadeghi (Technical University of Darmstadt), Farinaz Koushanfar (University of California San Diego)

Read More

Navigating Murky Waters: Automated Browser Feature Testing for Uncovering...

Mir Masood Ali (University of Illinois Chicago), Binoy Chitale (Stony Brook University), Mohammad Ghasemisharif (University of Illinois Chicago), Chris Kanich (University of Illinois Chicago), Nick Nikiforakis (Stony Brook University), Jason Polakis (University of Illinois Chicago)

Read More

Efficient Dynamic Proof of Retrievability for Cold Storage

Tung Le (Virginia Tech), Pengzhi Huang (Cornell University), Attila A. Yavuz (University of South Florida), Elaine Shi (CMU), Thang Hoang (Virginia Tech)

Read More

Partitioning Ethereum without Eclipsing It

Hwanjo Heo (ETRI), Seungwon Woo (ETRI/KAIST), Taeung Yoon (KAIST), Min Suk Kang (KAIST), Seungwon Shin (KAIST)

Read More