Adrian Shuai Li (Purdue University), Arun Iyengar (Intelligent Data Management and Analytics, LLC), Ashish Kundu (Cisco Research), Elisa Bertino (Purdue University)

In applying deep learning for malware classification, it is crucial to account for the prevalence of malware evolution, which can cause trained classifiers to fail on drifted malware. Existing solutions to address concept drift use active learning. They select new samples for analysts to label and then retrain the classifier with the new labels. Our key finding is that the current retraining techniques do not achieve optimal results. These techniques overlook that updating the model with scarce drifted samples requires learning features that remain consistent across pre-drift and post-drift data. The model should thus be able to disregard specific features that, while beneficial for the classification of pre-drift data, are absent in post-drift data, thereby preventing prediction degradation. In this paper, we propose a new technique for detecting and classifying drifted malware that learns drift-invariant features in malware control flow graphs by leveraging graph neural networks with adversarial domain adaptation. We compare it with existing model retraining methods in active learning-based malware detection systems and other domain adaptation techniques from the vision domain. Our approach significantly improves drifted malware detection on publicly available benchmarks and real-world malware databases reported daily by security companies in 2024. We also tested our approach in predicting multiple malware families drifted over time. A thorough evaluation shows that our approach outperforms the state-of-the-art approaches.

View More Papers

Panel on “Security and Privacy Issues in New 5G...

Moderator: Arupjyoti (Arup) Bhuyan, Ph.D. Director, Wireless Security Institute, Idaho National Laboratory Panelists: Ted K. Woodward, Ph.D. Technical Director for FutureG, OUSD (R&E) Phillip Porras, Program Director, Internet Security Research, SRI Donald McBride, Senior Security Researcher, Bell Laboratories, Nokia

Read More

User Comprehension and Comfort with Eye-Tracking and Hand-Tracking Permissions...

Kaiming Cheng (University of Washington), Mattea Sim (Indiana University), Tadayoshi Kohno (University of Washington), Franziska Roesner (University of Washington)

Read More

URVFL: Undetectable Data Reconstruction Attack on Vertical Federated Learning

Duanyi Yao (Hong Kong University of Science and Technology), Songze Li (Southeast University), Xueluan Gong (Wuhan University), Sizai Hou (Hong Kong University of Science and Technology), Gaoning Pan (Hangzhou Dianzi University)

Read More

CounterSEVeillance: Performance-Counter Attacks on AMD SEV-SNP

Stefan Gast (Graz University of Technology), Hannes Weissteiner (Graz University of Technology), Robin Leander Schröder (Fraunhofer SIT, Darmstadt, Germany and Fraunhofer Austria, Vienna, Austria), Daniel Gruss (Graz University of Technology)

Read More