Shridatt Sugrim (Rutgers University), Can Liu (Rutgers University), Meghan McLean (Rutgers University), Janne Lindqvist (Rutgers University)

Research has produced many types of authentication systems that use machine learning. However, there is no consistent approach for reporting performance metrics and the reported metrics are inadequate. In this work, we show that several of the common metrics used for reporting performance, such as maximum accuracy (ACC), equal error rate (EER) and area under the ROC curve (AUROC), are inherently flawed. These common metrics hide the details of the inherent trade-offs a system must make when implemented. Our findings show that current metrics give no insight into how system performance degrades outside the ideal conditions in which they were designed. We argue that adequate performance reporting must be provided to enable meaningful evaluation and that current, commonly used approaches fail in this regard. We present the unnormalized frequency count of scores (FCS) to demonstrate the mathematical underpinnings that lead to these failures and show how they can be avoided. The FCS can be used to augment the performance reporting to enable comparison across systems in a visual way. When reported with the Receiver Operating Characteristics curve (ROC), these two metrics provide a solution to the limitations of currently reported metrics. Finally, we show how to use the FCS and ROC metrics to evaluate and compare different authentication systems.

View More Papers

Enemy At the Gateways: Censorship-Resilient Proxy Distribution Using Game...

Milad Nasr (University of Massachusetts Amherst), Sadegh Farhang (Pennsylvania State University), Amir Houmansadr (University of Massachusetts Amherst), Jens Grossklags (Technical University of Munich)

Read More

Statistical Privacy for Streaming Traffic

Xiaokuan Zhang (The Ohio State University), Jihun Hamm (The Ohio State University), Michael K. Reiter (University of North Carolina at Chapel Hill), Yinqian Zhang (The Ohio State University)

Read More

Stealthy Adversarial Perturbations Against Real-Time Video Classification Systems

Shasha Li (University of California Riverside), Ajaya Neupane (University of California Riverside), Sujoy Paul (University of California Riverside), Chengyu Song (University of California Riverside), Srikanth V. Krishnamurthy (University of California Riverside), Amit K. Roy Chowdhury (University of California Riverside), Ananthram Swami (United States Army Research Laboratory)

Read More

NIC: Detecting Adversarial Samples with Neural Network Invariant Checking

Shiqing Ma (Purdue University), Yingqi Liu (Purdue University), Guanhong Tao (Purdue University), Wen-Chuan Lee (Purdue University), Xiangyu Zhang (Purdue University)

Read More