Jung-Woo Chang (University of California San Diego), Mojan Javaheripi (University of California San Diego), Seira Hidano (KDDI Research, Inc.), Farinaz Koushanfar (University of California San Diego)

Video compression plays a crucial role in video streaming and classification systems by maximizing the end-user quality of experience (QoE) at a given bandwidth budget.

In this paper, we conduct the first systematic study for adversarial attacks on deep learning-based video compression and downstream classification systems. Our attack framework, dubbed RoVISQ, manipulates the Rate-Distortion (R-D) relationship of a video compression model to achieve one or both of the following goals: (1) increasing the network bandwidth, (2) degrading the video quality for end-users. We further devise new objectives for targeted and untargeted attacks to a downstream video classification service. Finally, we design an input-invariant perturbation that universally disrupts video compression and classification systems in real time. Unlike previously proposed attacks on video classification, our adversarial perturbations are the first to withstand compression.

We empirically show the resilience of RoVISQ attacks against various defenses, i.e., adversarial training, video denoising, and JPEG compression. Our extensive experimental results on various video datasets show RoVISQ attacks deteriorate peak signal-to-noise ratio by up to 5.6dB and the bit-rate by up to ~ 2.4 times while achieving over 90% attack success rate on a downstream classifier. Our user study further demonstrates the effect of RoVISQ attacks on users’ QoE. We provide several example attacked videos used in our survey on https://sites.google.com/view/demo-of-rovisq/home.

View More Papers

Adventures in Wonderland: Automotive Cyber beyond the CAN Bus

Michael Westra (In-Vehicle Cyber Security Technical Manager, Ford)

Read More

Private Certifier Intersection

Bishakh Chandra Ghosh (Indian Institute of Technology Kharagpur), Sikhar Patranabis (IBM Research - India), Dhinakaran Vinayagamurthy (IBM Research - India), Venkatraman Ramakrishna (IBM Research - India), Krishnasuri Narayanam (IBM Research - India), Sandip Chakraborty (Indian Institute of Technology Kharagpur)

Read More

Non-Interactive Privacy-Preserving Sybil-Free Authentication Scheme in VANETs

Mahdi Akil (Karlstad University), Leonardo Martucci (Karlstad University), Jaap-Henk Hoepman (Radboud University)

Read More

The Vulnerabilities Less Exploited: Cyberattacks on End-of-Life Satellites

Frank Lee and Gregory Falco (Johns Hopkins University) Presenter: Frank Lee

Read More