Baltasar Dinis (Instituto Superior Técnico (IST-ULisboa) / INESC-ID / MPI-SWS), Peter Druschel (MPI-SWS), Rodrigo Rodrigues (Instituto Superior Técnico (IST-ULisboa) / INESC-ID)

Trusted Execution Environments (TEEs) ensure the confidentiality and integrity of computations in hardware. Subject to the TEE's threat model, the hardware shields a computation from most externally induced fault behavior except crashes. As a result, a crash-fault tolerant (CFT) replication protocol should be sufficient when replicating trusted code inside TEEs. However, TEEs do not provide efficient and general means of ensuring the freshness of external, persistent state. Therefore, CFT replication is insufficient for TEE computations with external state, as this state could be rolled back to an earlier version when a TEE restarts. Furthermore, using BFT protocols in this setting is too conservative, because these protocols are designed to tolerate arbitrary behavior, not just rollback during a restart.

In this paper, we propose the restart-rollback (RR) fault model for replicating TEEs, which precisely captures the possible fault behaviors of TEEs with external state. Then, we show that existing replication protocols can be easily adapted to this fault model with few changes, while retaining their original performance. We adapted two widely used crash fault tolerant protocols - the ABD read/write register protocol and the Paxos consensus protocol - to the RR model. Furthermore, we leverage these protocols to build a replicated metadata service called emph{TEEMS}, and then show that it can be used to add TEE-grade confidentiality, integrity, and freshness to untrusted cloud storage services. Our evaluation shows that our protocols perform significantly better than their BFT counterparts (between $1.25$ and $55times$ better throughput), while performing identically to the CFT versions, which do not protect against rollback attacks.

View More Papers

Tactics, Threats & Targets: Modeling Disinformation and its Mitigation

Shujaat Mirza (New York University), Labeeba Begum (New York University Abu Dhabi), Liang Niu (New York University), Sarah Pardo (New York University Abu Dhabi), Azza Abouzied (New York University Abu Dhabi), Paolo Papotti (EURECOM), Christina Pöpper (New York University Abu Dhabi)

Read More

Semi-Automated Synthesis of Driving Rules

Diego Ortiz, Leilani Gilpin, Alvaro A. Cardenas (University of California, Santa Cruz)

Read More

Detection and Resolution of Control Decision Anomalies

Prof. Kang Shin (Kevin and Nancy O'Connor Professor of Computer Science, and the Founding Director of the Real-Time Computing Laboratory (RTCL) in the Electrical Engineering and Computer Science Department at the University of Michigan)

Read More