Xiangfu Song (National University of Singapore), Dong Yin (Ant Group), Jianli Bai (The University of Auckland), Changyu Dong (Guangzhou University), Ee-Chien Chang (National University of Singapore)

A secret-shared shuffle (SSS) protocol permutes a secret-shared vector using a random secret permutation. It has found numerous applications, however, it is also an expensive operation and often a performance bottleneck. Chase et al. (Asiacrypt'20) recently proposed a highly efficient semi-honest two-party SSS protocol known as the CGP protocol. It utilizes purposely designed pseudorandom correlations that facilitate a communication-efficient online shuffle phase. That said, semi-honest security is insufficient in many real-world application scenarios since shuffle is usually used for highly sensitive applications. Considering this, recent works (CANS'21, NDSS'22) attempted to enhance the CGP protocol with malicious security over authenticated secret sharings. However, we find that these attempts are flawed, and malicious adversaries can still learn private information via malicious deviations. This is demonstrated with concrete attacks proposed in this paper. Then the question is how to fill the gap and design a maliciously secure CGP shuffle protocol. We answer this question by introducing a set of lightweight correlation checks and a leakage reduction mechanism. Then we apply our techniques with authenticated secret sharings to achieve malicious security. Notably, our protocol, while increasing security, is also efficient. In the two-party setting, experiment results show that our maliciously secure protocol introduces an acceptable overhead compared to its semi-honest version and is more efficient than the state-of-the-art maliciously secure SSS protocol from the MP-SPDZ library.

View More Papers

Flow Correlation Attacks on Tor Onion Service Sessions with...

Daniela Lopes (INESC-ID / IST, Universidade de Lisboa), Jin-Dong Dong (Carnegie Mellon University), Pedro Medeiros (INESC-ID / IST, Universidade de Lisboa), Daniel Castro (INESC-ID / IST, Universidade de Lisboa), Diogo Barradas (University of Waterloo), Bernardo Portela (INESC TEC / Universidade do Porto), João Vinagre (INESC TEC / Universidade do Porto), Bernardo Ferreira (LASIGE, Faculdade de…

Read More

EyeSeeIdentity: Exploring Natural Gaze Behaviour for Implicit User Identification...

L Yasmeen Abdrabou (Lancaster University), Mariam Hassib (Fortiss Research Institute of the Free State of Bavaria), Shuqin Hu (LMU Munich), Ken Pfeuffer (Aarhus University), Mohamed Khamis (University of Glasgow), Andreas Bulling (University of Stuttgart), Florian Alt (University of the Bundeswehr Munich)

Read More

Reverse Engineering of Multiplexed CAN Frames (Long)

Alessio Buscemi, Thomas Engel (SnT, University of Luxembourg), Kang G. Shin (The University of Michigan)

Read More

The impact of data-heavy, post-quantum TLS 1.3 on the...

Panos Kampanakis and Will Childs-Klein (AWS)

Read More