Harry W. H. Wong (The Chinese University of Hong Kong), Jack P. K. Ma (The Chinese University of Hong Kong), Sherman S. M. Chow (The Chinese University of Hong Kong)

Threshold signatures, notably ECDSA, are fundamental for securing decentralized applications. Their non-linear structure poses challenges in distributed signing, often tackled by pairwise multiplicative-to-additive share conversion, leading to O(n) communication and O(n2) verification costs for each of n signers. Moreover, most schemes lack robustness, necessitating a complete restart upon fault. A pioneering work by Wong et al. (NDSS '23) still requires rolling back to the preceding round to resume signing after another round to convince all other signers.

We revisit secure multiparty computation from threshold linearly homomorphic encryption (LHE). Realizing its public verifiability and fault recovery, we encompass two technical contributions to Castagnos–Laguillaumie LHE (CT-RSA '15): a 2-round robust distributed key generation (DKG) protocol in the dishonest majority setting and an accompanying zero-knowledge proof allowing extraction in an unknown-order group. We extend the DKG with dual-code-based verification (ACNS '17), upgrading its O(tn2)-cost private verifiability to an O(n2) public one.

Built on our DKG, we present the first threshold ECDSA protocol with O(1) communication and O(n) verification per-party costs while matching the lowest round complexity of nonrobust schemes (CCS '20). Empirically, we halve the computation and communication costs of the signing phase compared to state-of-the-art robust threshold ECDSA (NDSS '23). We also illustrate the versatility of our techniques with an improved threshold extension (IEEE S&P '23) of BBS+ signatures (IEEE Syst. J. '13).

View More Papers

Scrappy: SeCure Rate Assuring Protocol with PrivacY

Kosei Akama (Keio University), Yoshimichi Nakatsuka (ETH Zurich), Masaaki Sato (Tokai University), Keisuke Uehara (Keio University)

Read More

EyeSeeIdentity: Exploring Natural Gaze Behaviour for Implicit User Identification...

L Yasmeen Abdrabou (Lancaster University), Mariam Hassib (Fortiss Research Institute of the Free State of Bavaria), Shuqin Hu (LMU Munich), Ken Pfeuffer (Aarhus University), Mohamed Khamis (University of Glasgow), Andreas Bulling (University of Stuttgart), Florian Alt (University of the Bundeswehr Munich)

Read More

K-LEAK: Towards Automating the Generation of Multi-Step Infoleak Exploits...

Zhengchuan Liang (UC Riverside), Xiaochen Zou (UC Riverside), Chengyu Song (UC Riverside), Zhiyun Qian (UC Riverside)

Read More