Jiawen Zhang (Zhejiang University), Xinpeng Yang (Zhejiang University), Lipeng He (University of Waterloo), Kejia Chen (Zhejiang University), Wen-jie Lu (Zhejiang University), Yinghao Wang (Zhejiang University), Xiaoyang Hou (Zhejiang University), Jian Liu (Zhejiang University), Kui Ren (Zhejiang University), Xiaohu Yang (Zhejiang University)

Secure transformer inference has emerged as a prominent research topic following the proliferation of ChatGPT. Existing solutions are typically interactive, involving substantial communication load and numerous interaction rounds between the client and the server.

In this paper, we propose NEXUS, the first non-interactive protocol for secure transformer inference. The protocol requires the client to engage in just one round of communication with the server during the whole inference process: submitting an encrypted input and receiving an encrypted result.
NEXUS introduces several novel primitives, including SIMD ciphertext compression/decompression, SIMD slot folding, and secure Argmax, which enable it to significantly surpass the state-of-the-art in communication while maintaining comparable runtime. Specifically, it reduces bandwidth consumption by 372.5$times$ compared to BOLT (Oakland~'24) and 53.6$times$ compared to Bumblebee (NDSS~'25). Furthermore, its non-interactive property allows for optimal hardware acceleration, with the GPU version achieving a 42.3$times$ speedup in runtime. This enables NEXUS to run inference on a BERT-based model in just 37.3 seconds, consuming only 164~MB of bandwidth.

View More Papers

A Method to Facilitate Membership Inference Attacks in Deep...

Zitao Chen (University of British Columbia), Karthik Pattabiraman (University of British Columbia)

Read More

DLBox: New Model Training Framework for Protecting Training Data

Jaewon Hur (Seoul National University), Juheon Yi (Nokia Bell Labs, Cambridge, UK), Cheolwoo Myung (Seoul National University), Sangyun Kim (Seoul National University), Youngki Lee (Seoul National University), Byoungyoung Lee (Seoul National University)

Read More

RAIFLE: Reconstruction Attacks on Interaction-based Federated Learning with Adversarial...

Dzung Pham (University of Massachusetts Amherst), Shreyas Kulkarni (University of Massachusetts Amherst), Amir Houmansadr (University of Massachusetts Amherst)

Read More

DiStefano: Decentralized Infrastructure for Sharing Trusted Encrypted Facts and...

Sofia Celi (Brave Software), Alex Davidson (NOVA LINCS & Universidade NOVA de Lisboa), Hamed Haddadi (Imperial College London & Brave Software), Gonçalo Pestana (Hashmatter), Joe Rowell (Information Security Group, Royal Holloway, University of London)

Read More