Justin Furuness (University of Connecticut), Cameron Morris (University of Connecticut), Reynaldo Morillo (University of Connecticut), Arvind Kasiliya (University of Connecticut), Bing Wang (University of Connecticut), Amir Herzberg (University of Connecticut)

Before the adoption of Route Origin Validation (ROV), prefix and subprefix hijacks were the most effective and common attacks on BGP routing. Recent works show that ROV adoption is increasing rapidly; with sufficient ROV adoption, prefix and subprefix attacks become ineffective.
We study this changing landscape and in particular the Autonomous System Provider Authorization (ASPA) proposal,
which focuses on route leakage but also foils some other
attacks.

Using recent measurements of real-world ROV adoption, we evaluate its security impact. Our simulations show substantial impact: emph{already today}, prefix hijacks are less effective than forged-origin hijacks, and the effectiveness of subprefix hijacks is much reduced.
Therefore, we expect attackers to move to forged-origin hijacks and other emph{post-ROV attacks}; we present a new, powerful post-ROV attack, emph{spoofing}.

We present extensive evaluations of different post-ROV defenses and attacks. Our results show that ASPA significantly protects against post-ROV attacks, even in partial adoption. It dramatically improves upon the use of only ROV or of BGPsec, Path-End, OTC, and EdgeFilter. BGP-iSec has even better protection but requires public-key operations to export/import announcements. We also present ASPAwN, an extension that further improves ASPA's performance. Our results show that contrary to prior works [74], [95], ASPA is effective even when tier-1 ASes are not adopting, hence motivating ASPA adoption at edge and intermediate ASes.
On the other hand, we find that against
emph{accidental} route leaks, the simpler, standardized OTC mechanism is as effective as ASPA.

View More Papers

SafeSplit: A Novel Defense Against Client-Side Backdoor Attacks in...

Phillip Rieger (Technical University of Darmstadt), Alessandro Pegoraro (Technical University of Darmstadt), Kavita Kumari (Technical University of Darmstadt), Tigist Abera (Technical University of Darmstadt), Jonathan Knauer (Technical University of Darmstadt), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More

SCAMMAGNIFIER: Piercing the Veil of Fraudulent Shopping Website Campaigns

Marzieh Bitaab (Arizona State University), Alireza Karimi (Arizona State University), Zhuoer Lyu (Arizona State University), Adam Oest (Amazon), Dhruv Kuchhal (Amazon), Muhammad Saad (X Corp.), Gail-Joon Ahn (Arizona State University), Ruoyu Wang (Arizona State University), Tiffany Bao (Arizona State University), Yan Shoshitaishvili (Arizona State University), Adam Doupé (Arizona State University)

Read More

Statically Discover Cross-Entry Use-After-Free Vulnerabilities in the Linux Kernel

Hang Zhang (Indiana University Bloomington), Jangha Kim (The Affiliated Institute of ETRI, ROK), Chuhong Yuan (Georgia Institute of Technology), Zhiyun Qian (University of California, Riverside), Taesoo Kim (Georgia Institute of Technology)

Read More

CounterSEVeillance: Performance-Counter Attacks on AMD SEV-SNP

Stefan Gast (Graz University of Technology), Hannes Weissteiner (Graz University of Technology), Robin Leander Schröder (Fraunhofer SIT, Darmstadt, Germany and Fraunhofer Austria, Vienna, Austria), Daniel Gruss (Graz University of Technology)

Read More