Shichen Wu (1. School of Cyber Science and Technology, Shandong University 2. Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education), Puwen Wei (1. School of Cyber Science and Technology, Shandong University 2. Quancheng Laboratory 3. Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education), Ren Zhang (Cryptape Co. Ltd. and…

Proof-of-work (PoW) blockchain protocols based on directed acyclic graphs (DAGs) have demonstrated superior transaction confirmation performance compared to their chain-based predecessors. However, it is uncertain whether their security deteriorates in high-throughput settings similar to their predecessors, because their acceptance of simultaneous blocks and complex block dependencies presents challenges for rigorous security analysis.

We address these challenges by analyzing DAG-based protocols via a congestible blockchain model (CBM), a general model that allows case-by-case upper bounds on the block propagation delay, rather than a uniform upper bound as in most previous analyses. CBM allows us to capture two key phenomena of high-throughput settings: (1) simultaneous blocks increase each other's propagation delay, and (2) a block can be processed only after receiving all the blocks it refers to. We further devise a reasonable adversarial block propagation strategy in CBM, called the late-predecessor attack, which exploits block dependencies to delay the processing of honest blocks. We then evaluate the security and performance of Prism and OHIE, two DAG-based protocols that aim to break the security-performance tradeoff, in the presence of an attacker capable of launching the late predecessor attack. Our results show that these protocols suffer from reduced security and extended latency in high-throughput settings similar to their chain-based predecessors.

View More Papers

Securing Automotive Software Supply Chains (Long)

Marina Moore, Aditya Sirish A Yelgundhalli (New York University), Justin Cappos (NYU)

Read More

Towards Real-time Voice Interaction Data Collection Monitoring and Ambient...

Tu Le (University of California, Irvine), Zixin Wang (Zhejiang University), Danny Yuxing Huang (New York University), Yaxing Yao (Virginia Tech), Yuan Tian (University of California, Los Angeles)

Read More

Large Language Model guided Protocol Fuzzing

Ruijie Meng (National University of Singapore, Singapore), Martin Mirchev (National University of Singapore), Marcel Böhme (MPI-SP, Germany and Monash University, Australia), Abhik Roychoudhury (National University of Singapore)

Read More

NODLINK: An Online System for Fine-Grained APT Attack Detection...

Shaofei Li (Key Laboratory of High-Confidence Software Technologies (MOE), School of Computer Science, Peking University), Feng Dong (Huazhong University of Science and Technology), Xusheng Xiao (Arizona State University), Haoyu Wang (Huazhong University of Science and Technology), Fei Shao (Case Western Reserve University), Jiedong Chen (Sangfor Technologies Inc.), Yao Guo (Key Laboratory of High-Confidence Software Technologies…

Read More