Lei Zhao (Wuhan University), Yue Duan (University of California, Riverside), Heng Yin (University of California, Riverside), Jifeng Xuan (Wuhan University)

Hybrid fuzzing which combines fuzzing and concolic execution has become an advanced technique for software vulnerability detection. Based on the observation that fuzzing and concolic execution are complementary in nature, the state-of-the-art hybrid fuzzing systems deploy ``demand launch'' and ``optimal switch'' strategies. Although these ideas sound intriguing, we point out several fundamental limitations in them, due to oversimplified assumptions. We then propose a novel ``discriminative dispatch'' strategy to better utilize the capability of concolic execution. We design a novel Monte Carlo based probabilistic path prioritization model to quantify each path's difficulty and prioritize them for concolic execution. This model treats fuzzing as a random sampling process. It calculates each path's probability based on the sampling information. Finally, our model prioritizes and assigns the most difficult paths to concolic execution. We implement a prototype system DigFuzz and evaluate our system with two representative datasets. Results show that the concolic execution in DigFuzz outperforms than that in a state-of-the-art hybrid fuzzing system Driller in every major aspect. In particular, the concolic execution in DigFuzz contributes to discovering more vulnerabilities (12 vs. 5) and producing more code coverage (18.9% vs. 3.8%) on the CQE dataset than the concolic execution in Driller.

View More Papers

CRCount: Pointer Invalidation with Reference Counting to Mitigate Use-after-free...

Jangseop Shin (Seoul National University and Inter-University Semiconductor Research Center), Donghyun Kwon (Seoul National University and Inter-University Semiconductor Research Center), Jiwon Seo (Seoul National University and Inter-University Semiconductor Research Center), Yeongpil Cho (Soongsil University), Yunheung Paek (Seoul National University and Inter-University Semiconductor Research Center)

Read More

Quantity vs. Quality: Evaluating User Interest Profiles Using Ad...

Muhammad Ahmad Bashir (Northeastern University), Umar Farooq (LUMS Pakistan), Maryam Shahid (LUMS Pakistan), Muhammad Fareed Zaffar (LUMS Pakistan), Christo Wilson (Northeastern University)

Read More

Anonymous Multi-Hop Locks for Blockchain Scalability and Interoperability

Giulio Malavolta (Friedrich-Alexander University Erlangen-Nürnberg), Pedro Moreno Sanchez (TU Wien), Clara Schneidewind (TU Wien), Aniket Kate (Purdue University), Matteo Maffei (TU Wien)

Read More

Practical Hidden Voice Attacks against Speech and Speaker Recognition...

Hadi Abdullah (University of Florida), Washington Garcia (University of Florida), Christian Peeters (University of Florida), Patrick Traynor (University of Florida), Kevin R. B. Butler (University of Florida), Joseph Wilson (University of Florida)

Read More