Michael Rodler (University of Duisburg-Essen), Wenting Li (NEC Laboratories, Germany), Ghassan O. Karame (NEC Laboratories, Germany), Lucas Davi (University of Duisburg-Essen)

Recently, a number of existing blockchain systems have witnessed major bugs and vulnerabilities within smart contracts. Although the literature features a number of proposals for securing smart contracts, these proposals mostly focus on proving the correctness or absence of a certain type of vulnerability within a contract, but cannot protect deployed (legacy) contracts from being exploited.
In this paper, we address this problem in the context of re-entrancy exploits and propose a novel smart contract security technology, dubbed Sereum (Secure Ethereum), which protects existing, deployed contracts against re-entrancy attacks in a backwards compatible way based on run-time monitoring and validation. Sereum does neither require any modification nor any semantic knowledge of existing contracts. By means of implementation and evaluation using the Ethereum blockchain, we show that Sereum covers the actual execution flow of a smart contract to accurately detect and prevent
attacks with a false positive rate as small as 0.06% and with negligible
run-time overhead. As a by-product, we develop three advanced re-entrancy attacks to demonstrate the limitations of existing offline vulnerability analysis tools.

View More Papers

DroidCap: OS Support for Capability-based Permissions in Android

Abdallah Dawoud (CISPA Helmholtz Center i.G.), Sven Bugiel (CISPA Helmholtz Center i.G.)

Read More

Practical Hidden Voice Attacks against Speech and Speaker Recognition...

Hadi Abdullah (University of Florida), Washington Garcia (University of Florida), Christian Peeters (University of Florida), Patrick Traynor (University of Florida), Kevin R. B. Butler (University of Florida), Joseph Wilson (University of Florida)

Read More

Nearby Threats: Reversing, Analyzing, and Attacking Google’s ‘Nearby Connections’...

Daniele Antonioli (Singapore University of Technology and Design (SUTD)), Nils Ole Tippenhauer (CISPA), Kasper Rasmussen (University of Oxford)

Read More

Cracking the Wall of Confinement: Understanding and Analyzing Malicious...

Eihal Alowaisheq (Indiana University, King Saud University), Peng Wang (Indiana University), Sumayah Alrwais (King Saud University), Xiaojing Liao (Indiana University), XiaoFeng Wang (Indiana University), Tasneem Alowaisheq (Indiana University, King Saud University), Xianghang Mi (Indiana University), Siyuan Tang (Indiana University), Baojun Liu (Tsinghua University)

Read More