Andes Y. L. Kei (Chinese University of Hong Kong), Sherman S. M. Chow (Chinese University of Hong Kong)

Adoption of transformer-based machine learning models is growing, raising concerns about sensitive data exposure. Nonetheless, current secure inference solutions incur substantial overhead due to their extensive reliance on non-linear protocols, such as softmax and Gaussian error linear unit (GELU). Driven by numerical stability needs, softmax approximations (e.g., NeurIPS 2021) typically extract the maximum element of an input vector, incurring logarithmic rounds (in the input length). Existing GELU protocols (e.g., S&P 2024) use piecewise approximations with high-degree polynomials that rely heavily on secure multiplications and comparisons, which are expensive. Such complexities also hinder model owners who are not familiar with cryptography from easily deploying their custom models.

SHAFT, our proposed system, provides a secure, handy, accurate, and fast transformer inference framework for deployment. Highlights of our contributions include 1) the first constant-round softmax protocol for transformers, uniquely combining the benefits of input clipping and characteristics of ordinary differential equations, and 2) a highly accurate GELU protocol on a novel characterization designed for Fourier series approximation. Extending to broader contexts, our new protocols also apply to general neural networks using softmax as the final layer and to transformer architectures with different activation functions. Remarkably, SHAFT outperforms state-of-the-art SIGMA (PETS 2024), based on secret sharing, and BumbleBee (NDSS 2025), which additionally uses RLWE-based homomorphic encryption. More specifically, SHAFT minimizes communication by 25-41%. and matches SIGMA's running time while surpassing BumbleBee in running time by 4.6-5.3× on LANs and 2.9-4.4× on WANs. Alongside these improvements, SHAFT attains accuracy comparable to plaintext, confirming its numerical stability and accuracy. Next in this progression, SHAFT provides an accessible open-source framework for secure and handy deployment by smoothly integrating with the Hugging Face library (EMNLP Demos 2020).

View More Papers

LLM-xApp: A Large Language Model Empowered Radio Resource Management...

Xingqi Wu (University of Michigan-Dearborn), Junaid Farooq (University of Michigan-Dearborn), Yuhui Wang (University of Michigan-Dearborn), Juntao Chen (Fordham University)

Read More

EAGLEYE: Exposing Hidden Web Interfaces in IoT Devices via...

Hangtian Liu (Information Engineering University), Lei Zheng (Institute for Network Sciences and Cyberspace (INSC), Tsinghua University), Shuitao Gan (Laboratory for Advanced Computing and Intelligence Engineering), Chao Zhang (Institute for Network Sciences and Cyberspace (INSC), Tsinghua University), Zicong Gao (Information Engineering University), Hongqi Zhang (Henan Key Laboratory of Information Security), Yishun Zeng (Institute for Network Sciences…

Read More

DUMPLING: Fine-grained Differential JavaScript Engine Fuzzing

Liam Wachter (EPFL), Julian Gremminger (EPFL), Christian Wressnegger (Karlsruhe Institute of Technology (KIT)), Mathias Payer (EPFL), Flavio Toffalini (EPFL)

Read More

Deanonymizing Device Identities via Side-channel Attacks in Exclusive-use IoTs...

Christopher Ellis (The Ohio State University), Yue Zhang (Drexel University), Mohit Kumar Jangid (The Ohio State University), Shixuan Zhao (The Ohio State University), Zhiqiang Lin (The Ohio State University)

Read More