Andes Y. L. Kei (Chinese University of Hong Kong), Sherman S. M. Chow (Chinese University of Hong Kong)

Adoption of transformer-based machine learning models is growing, raising concerns about sensitive data exposure. Nonetheless, current secure inference solutions incur substantial overhead due to their extensive reliance on non-linear protocols, such as softmax and Gaussian error linear unit (GELU). Driven by numerical stability needs, softmax approximations (e.g., NeurIPS 2021) typically extract the maximum element of an input vector, incurring logarithmic rounds (in the input length). Existing GELU protocols (e.g., S&P 2024) use piecewise approximations with high-degree polynomials that rely heavily on secure multiplications and comparisons, which are expensive. Such complexities also hinder model owners who are not familiar with cryptography from easily deploying their custom models.

SHAFT, our proposed system, provides a secure, handy, accurate, and fast transformer inference framework for deployment. Highlights of our contributions include 1) the first constant-round softmax protocol for transformers, uniquely combining the benefits of input clipping and characteristics of ordinary differential equations, and 2) a highly accurate GELU protocol on a novel characterization designed for Fourier series approximation. Extending to broader contexts, our new protocols also apply to general neural networks using softmax as the final layer and to transformer architectures with different activation functions. Remarkably, SHAFT outperforms state-of-the-art SIGMA (PETS 2024), based on secret sharing, and BumbleBee (NDSS 2025), which additionally uses RLWE-based homomorphic encryption. More specifically, SHAFT minimizes communication by 25-41%. and matches SIGMA's running time while surpassing BumbleBee in running time by 4.6-5.3× on LANs and 2.9-4.4× on WANs. Alongside these improvements, SHAFT attains accuracy comparable to plaintext, confirming its numerical stability and accuracy. Next in this progression, SHAFT provides an accessible open-source framework for secure and handy deployment by smoothly integrating with the Hugging Face library (EMNLP Demos 2020).

View More Papers

Towards Understanding Unsafe Video Generation

Yan Pang (University of Virginia), Aiping Xiong (Penn State University), Yang Zhang (CISPA Helmholtz Center for Information Security), Tianhao Wang (University of Virginia)

Read More

Feedback-Guided API Fuzzing of 5G Network

Tianchang Yang (Pennsylvania State University), Sathiyajith K S (Pennsylvania State University), Ashwin Senthil Arumugam (Pennsylvania State University), Syed Rafiul Hussain (Pennsylvania State University)

Read More

KernelSnitch: Side Channel-Attacks on Kernel Data Structures

Lukas Maar (Graz University of Technology), Jonas Juffinger (Graz University of Technology), Thomas Steinbauer (Graz University of Technology), Daniel Gruss (Graz University of Technology), Stefan Mangard (Graz University of Technology)

Read More

dAngr: Lifting Software Debugging to a Symbolic Level

Dairo de Ruck, Jef Jacobs, Jorn Lapon, Vincent Naessens (DistriNet, KU Leuven, 3001 Leuven, Belgium)

Read More