Andes Y. L. Kei (Chinese University of Hong Kong), Sherman S. M. Chow (Chinese University of Hong Kong)

Adoption of transformer-based machine learning models is growing, raising concerns about sensitive data exposure. Nonetheless, current secure inference solutions incur substantial overhead due to their extensive reliance on non-linear protocols, such as softmax and Gaussian error linear unit (GELU). Driven by numerical stability needs, softmax approximations (e.g., NeurIPS 2021) typically extract the maximum element of an input vector, incurring logarithmic rounds (in the input length). Existing GELU protocols (e.g., S&P 2024) use piecewise approximations with high-degree polynomials that rely heavily on secure multiplications and comparisons, which are expensive. Such complexities also hinder model owners who are not familiar with cryptography from easily deploying their custom models.

SHAFT, our proposed system, provides a secure, handy, accurate, and fast transformer inference framework for deployment. Highlights of our contributions include 1) the first constant-round softmax protocol for transformers, uniquely combining the benefits of input clipping and characteristics of ordinary differential equations, and 2) a highly accurate GELU protocol on a novel characterization designed for Fourier series approximation. Extending to broader contexts, our new protocols also apply to general neural networks using softmax as the final layer and to transformer architectures with different activation functions. Remarkably, SHAFT outperforms state-of-the-art SIGMA (PETS 2024), based on secret sharing, and BumbleBee (NDSS 2025), which additionally uses RLWE-based homomorphic encryption. More specifically, SHAFT minimizes communication by 25-41%. and matches SIGMA's running time while surpassing BumbleBee in running time by 4.6-5.3× on LANs and 2.9-4.4× on WANs. Alongside these improvements, SHAFT attains accuracy comparable to plaintext, confirming its numerical stability and accuracy. Next in this progression, SHAFT provides an accessible open-source framework for secure and handy deployment by smoothly integrating with the Hugging Face library (EMNLP Demos 2020).

View More Papers

BitShield: Defending Against Bit-Flip Attacks on DNN Executables

Yanzuo Chen (The Hong Kong University of Science and Technology), Yuanyuan Yuan (The Hong Kong University of Science and Technology), Zhibo Liu (The Hong Kong University of Science and Technology), Sihang Hu (Huawei Technologies), Tianxiang Li (Huawei Technologies), Shuai Wang (The Hong Kong University of Science and Technology)

Read More

OrbID: Identifying Orbcomm Satellite RF Fingerprints

Cédric Solenthaler (ETH Zurich), Joshua Smailes (University of Oxford), Martin Strohmeier (armasuisse Science & Technology)

Read More

PQConnect: Automated Post-Quantum End-to-End Tunnels

Daniel J. Bernstein (University of Illinois at Chicago and Academia Sinica), Tanja Lange (Eindhoven University of Technology amd Academia Sinica), Jonathan Levin (Academia Sinica and Eindhoven University of Technology), Bo-Yin Yang (Academia Sinica)

Read More

MTZK: Testing and Exploring Bugs in Zero-Knowledge (ZK) Compilers

Dongwei Xiao (The Hong Kong University of Science and Technology), Zhibo Liu (The Hong Kong University of Science and Technology), Yiteng Peng (The Hong Kong University of Science and Technology), Shuai Wang (The Hong Kong University of Science and Technology)

Read More