Sian Kim (Ewha Womans University), Seyed Mohammad Mehdi Mirnajafizadeh (Wayne State University), Bara Kim (Korea University), Rhongho Jang (Wayne State University), DaeHun Nyang (Ewha Womans University)

Intelligent Network Data Plane (INDP) is emerging as a promising direction for in-network security due to the advancement of machine learning technologies and the importance of fast mitigation of attacks. However, the feature extraction function still poses various challenges due to multiple hardware constraints in the data plane, especially for the advanced per-flow 3rd-order features (e.g., inter-packet delay and packet size distributions) preferred by recent security applications. In this paper, we discover novel attack surfaces of state-of-the-art data plane feature extractors that had to accommodate the hardware constraints, allowing adversaries to evade the entire attack detection loop of in-network intrusion detection systems. To eliminate the attack surfaces fundamentally, we pursue an evolution of a probabilistic (sketch) approach to enable flawless 3rd-order feature extraction, highlighting High-resolution, All-flow, and Full-range (HAF) 3rd-order feature measurement capacity. To our best knowledge, the proposed scheme, namely SketchFeature, is the first sketch-based 3rd-order feature extractor fully deployable in the data plane. Through extensive analyses, we confirmed the robust performance of SketchFeature theoretically and experimentally. Furthermore, we ran various security use cases, namely covert channel, botnet, and DDoS detections, with SketchFeature as a feature extractor, and achieved near-optimal attack detection performance.

View More Papers

Moneta: Ex-Vivo GPU Driver Fuzzing by Recalling In-Vivo Execution...

Joonkyo Jung (Department of Computer Science, Yonsei University), Jisoo Jang (Department of Computer Science, Yonsei University), Yongwan Jo (Department of Computer Science, Yonsei University), Jonas Vinck (DistriNet, KU Leuven), Alexios Voulimeneas (CYS, TU Delft), Stijn Volckaert (DistriNet, KU Leuven), Dokyung Song (Department of Computer Science, Yonsei University)

Read More

Statically Discover Cross-Entry Use-After-Free Vulnerabilities in the Linux Kernel

Hang Zhang (Indiana University Bloomington), Jangha Kim (The Affiliated Institute of ETRI, ROK), Chuhong Yuan (Georgia Institute of Technology), Zhiyun Qian (University of California, Riverside), Taesoo Kim (Georgia Institute of Technology)

Read More

URVFL: Undetectable Data Reconstruction Attack on Vertical Federated Learning

Duanyi Yao (Hong Kong University of Science and Technology), Songze Li (Southeast University), Xueluan Gong (Wuhan University), Sizai Hou (Hong Kong University of Science and Technology), Gaoning Pan (Hangzhou Dianzi University)

Read More

CCTAG: Configurable and Combinable Tagged Architecture

Zhanpeng Liu (Peking University), Yi Rong (Tsinghua University), Chenyang Li (Peking University), Wende Tan (Tsinghua University), Yuan Li (Zhongguancun Laboratory), Xinhui Han (Peking University), Songtao Yang (Zhongguancun Laboratory), Chao Zhang (Tsinghua University)

Read More