Akul Goyal (University of Illinois at Urbana-Champaign), Xueyuan Han (Wake Forest University), Gang Wang (University of Illinois at Urbana-Champaign), Adam Bates (University of Illinois at Urbana-Champaign)

Reliable methods for host-layer intrusion detection remained an open problem within computer security. Recent research has recast intrusion detection as a provenance graph anomaly detection problem thanks to concurrent advancements in machine learning and causal graph auditing. While these approaches show promise, their robustness against an adaptive adversary has yet to be proven. In particular, it is unclear if mimicry attacks, which plagued past approaches to host intrusion detection, have a similar effect on modern graph-based methods.

In this work, we reveal that systematic design choices have allowed mimicry attacks to continue to abound in provenance graph host intrusion detection systems (Prov-HIDS). Against a corpus of exemplar Prov-HIDS, we develop evasion tactics that allow attackers to hide within benign process behaviors. Evaluating against public datasets, we demonstrate that an attacker can consistently evade detection (100% success rate) without modifying the underlying attack behaviors. We go on to show that our approach is feasible in live attack scenarios and outperforms domain-general adversarial sample techniques. Through open sourcing our code and datasets, this work will serve as a benchmark for the evaluation of future Prov-HIDS.

View More Papers

AuthentiSense: A Scalable Behavioral Biometrics Authentication Scheme using Few-Shot...

Hossein Fereidooni (Technical University of Darmstadt), Jan Koenig (University of Wuerzburg), Phillip Rieger (Technical University of Darmstadt), Marco Chilese (Technical University of Darmstadt), Bora Goekbakan (KOBIL, Germany), Moritz Finke (University of Wuerzburg), Alexandra Dmitrienko (University of Wuerzburg), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More

VICEROY: GDPR-/CCPA-compliant Enforcement of Verifiable Accountless Consumer Requests

Scott Jordan (University of California, Irvine), Yoshimichi Nakatsuka (University of California, Irvine), Ercan Ozturk (University of California, Irvine), Andrew Paverd (Microsoft Research), Gene Tsudik (University of California, Irvine)

Read More

Detection and Resolution of Control Decision Anomalies

Prof. Kang Shin (Kevin and Nancy O'Connor Professor of Computer Science, and the Founding Director of the Real-Time Computing Laboratory (RTCL) in the Electrical Engineering and Computer Science Department at the University of Michigan)

Read More

Guess Which Car Type I Am Driving: Information Leak...

Dongyao Chen (Shanghai Jiao Tong University), Mert D. Pesé (Clemson University), Kang G. Shin (University of Michigan, Ann Arbor)

Read More