Yuan Xiao (The Ohio State University), Yinqian Zhang (The Ohio State University), Radu Teodorescu (The Ohio State University)

SPEculative Execution side Channel Hardware (SPEECH) Vulnerabilities have enabled the notorious Meltdown, Spectre, and L1 terminal fault (L1TF) attacks. While a number of studies have reported different variants of SPEECH vulnerabilities, they are still not well understood. This is primarily due to the lack of information about microprocessor implementation details that impact the timing and order of various micro-architectural events. Moreover, to date, there is no systematic approach to quantitatively measure SPEECH vulnerabilities on commodity processors.

This paper introduces SPEECHMINER, a software framework for exploring and measuring SPEECH vulnerabilities in an automated manner. SPEECHMINER empirically establishes the link between a novel two-phase fault handling model and the exploitability and speculation windows of SPEECH vulnerabilities. It enables testing of a comprehensive list of exception-triggering instructions under the same software framework, which leverages covert-channel techniques and differential tests to gain visibility into the micro-architectural state changes. We evaluated SPEECHMINER on 9 different processor types, examined 21 potential vulnerability variants, confirmed various known attacks, and identified several new variants.

View More Papers

OmegaLog: High-Fidelity Attack Investigation via Transparent Multi-layer Log Analysis

Wajih Ul Hassan (University of Illinois Urbana-Champaign), Mohammad A. Noureddine (University of Illinois Urbana-Champaign), Pubali Datta (University of Illinois Urbana-Champaign), Adam Bates (University of Illinois Urbana-Champaign)

Read More

Designing a Better Browser for Tor with BLAST

Tao Wang (Hong Kong University of Science and Technology)

Read More

Withdrawing the BGP Re-Routing Curtain: Understanding the Security Impact...

Jared M. Smith (University of Tennessee, Knoxville), Kyle Birkeland (University of Tennessee, Knoxville), Tyler McDaniel (University of Tennessee, Knoxville), Max Schuchard (University of Tennessee, Knoxville)

Read More

NoJITsu: Locking Down JavaScript Engines

Taemin Park (University of California, Irvine), Karel Dhondt (imec-DistriNet, KU Leuven), David Gens (University of California, Irvine), Yeoul Na (University of California, Irvine), Stijn Volckaert (imec-DistriNet, KU Leuven), Michael Franz (University of California, Irvine, USA)

Read More