Shasha Li (University of California Riverside), Ajaya Neupane (University of California Riverside), Sujoy Paul (University of California Riverside), Chengyu Song (University of California Riverside), Srikanth V. Krishnamurthy (University of California Riverside), Amit K. Roy Chowdhury (University of California Riverside), Ananthram Swami (United States Army Research Laboratory)

Recent research has demonstrated the brittleness of machine learning systems to adversarial perturbations. However, the studies have been mostly limited to perturbations on images and more generally, classification tasks that do not deal with real-time stream inputs. In this paper we ask ”Are adversarial perturbations that cause misclassification in real-time video classification systems possible, and if so what properties must they satisfy?” Real-time video classification systems find application in surveillance applications, smart vehicles, and smart elderly care and thus, misclassification could be particularly harmful (e.g., a mishap at an elderly care facility may be missed). Video classification systems take video clips as inputs and these clip boundaries are not deterministic. We show that perturbations that do not take “the indeterminism in the clip boundaries input to the video classifier” into account, do not achieve high attack success rates. We propose novel approaches for generating 3D adversarial perturbations (perturbation clips) that exploit recent advances in generative models to not only overcome this key challenge but also provide stealth. In particular, our most potent 3D adversarial perturbations cause targeted activities in video streams to be misclassified with rates over 80%. At the same time, they also ensure that the perturbations leave other (untargeted) activities largely unaffected making them extremely stealthy. Finally, we also derive a single-frame (2D) perturbation that can be applied to every frame in a video stream, and which in many cases, achieves extremely high misclassification rates.

View More Papers

Send Hardest Problems My Way: Probabilistic Path Prioritization for...

Lei Zhao (Wuhan University), Yue Duan (University of California, Riverside), Heng Yin (University of California, Riverside), Jifeng Xuan (Wuhan University)

Read More

Coconut: Threshold Issuance Selective Disclosure Credentials with Applications to...

Alberto Sonnino (University College London (UCL)), Mustafa Al-Bassam (University College London (UCL)), Shehar Bano (University College London (UCL)), Sarah Meiklejohn (University College London (UCL)), George Danezis (University College London (UCL))

Read More

NoDoze: Combatting Threat Alert Fatigue with Automated Provenance Triage

Wajih Ul Hassan (NEC Laboratories America, Inc.; University of Illinois at Urbana–Champaign), Shengjian Guo (Virginia Tech), Ding Li (NEC Laboratories America, Inc.), Zhengzhang Chen (NEC Laboratories America, Inc.), Kangkook Jee (NEC Laboratories America, Inc.), Zhichun Li (NEC Laboratories America, Inc.), Adam Bates (University of Illinois at Urbana–Champaign)

Read More

Unveiling your keystrokes: A Cache-based Side-channel Attack on Graphics...

Daimeng Wang (University of California Riverside), Ajaya Neupane (University of California Riverside), Zhiyun Qian (University of California Riverside), Nael Abu-Ghazaleh (University of California Riverside), Srikanth V. Krishnamurthy (University of California Riverside), Edward J. M. Colbert (Virginia Tech), Paul Yu (U.S. Army Research Lab (ARL))

Read More