Ke Sun (University of California San Diego), Chunyu Xia (University of California San Diego), Songlin Xu (University of California San Diego), Xinyu Zhang (University of California San Diego)

Voice User Interfaces (VUIs) are becoming an indispensable module that enables hands-free interaction between human users and smartphones. Unfortunately, recent research revealed a side channel that allows zero-permission motion sensors to eavesdrop on the VUI voices from the co-located smartphone loudspeaker. Nonetheless, these threats are limited to leaking a small set of digits and hot words. In this paper, we propose StealthyIMU, a new threat that uses motion sensors to steal permission-protected private information from the VUIs. We develop a set of efficient models to detect and extract private information, taking advantage of the deterministic structures in the VUI responses. Our experiments show that StealthyIMU can steal private information from 23 types of frequently-used voice commands to acquire contacts, search history, calendar, home address, and even GPS trace with high accuracy. We further propose effective mechanisms to defend against StealthyIMU without noticeably impacting the user experience.

View More Papers

Position Paper: Space System Threat Models Must Account for...

Benjamin Cyr and Yan Long (University of Michigan), Takeshi Sugawara (The University of Electro-Communications), Kevin Fu (Northeastern University)

Read More

REaaS: Enabling Adversarially Robust Downstream Classifiers via Robust Encoder...

Wenjie Qu (Huazhong University of Science and Technology), Jinyuan Jia (University of Illinois Urbana-Champaign), Neil Zhenqiang Gong (Duke University)

Read More

Cryptographic Oracle-based Conditional Payments

Varun Madathil (North Carolina State University), Sri Aravinda Krishnan Thyagarajan (NTT Research), Dimitrios Vasilopoulos (IMDEA Software Institute), Lloyd Fournier (None), Giulio Malavolta (Max Planck Institute for Security and Privacy), Pedro Moreno-Sanchez (IMDEA Software Institute)

Read More

FCGAT: Interpretable Malware Classification Method using Function Call Graph...

Minami Someya (Institute of Information Security), Yuhei Otsubo (National Police Academy), Akira Otsuka (Institute of Information Security)

Read More