Xiaochen Zou (UC Riverside), Yu Hao (UC Riverside), Zheng Zhang (UC RIverside), Juefei Pu (UC RIverside), Weiteng Chen (Microsoft Research, Redmond), Zhiyun Qian (UC Riverside)

Continuous fuzzing has become an integral part of the Linux kernel ecosystem, discovering thousands of bugs over the past few years. Interestingly, only a tiny fraction of them were turned into real-world exploits that target downstream distributions, e.g., Ubuntu and Fedora. This contradicts the conclusions of existing exploitability assessment tools, which classify hundreds of those bugs as high-risk, implying a high likelihood of exploitability.

Our study aims to understand the gap and bridge it. Through our investigation, we realize that the current exploitability assessment tools exclusively test bug exploitability on the upstream Linux, which is for development only; in fact, we find many of them fail to reproduce directly in downstreams. Through a large-scale measurement study of 230 bugs on 43 distros (8,032 bug/distro pairs), we find that each distro only reproduces 19.1% of bugs on average by running the upstream PoCs as root user, and 0.9% without root. Remarkably, both numbers can be significantly improved by 61% and 1300% times respectively through appropriate PoC adaptations, necessitated by environment differences.

To this end, we developed SyzBridge, a fully automated system that adapts upstream PoCs to downstream kernels. We further integrate SyzBridge with SyzScope, a state-of-the-art exploitability assessment tool that can identify high-risk exploit primitives, e.g., control flow hijack. Our integrated pipeline successfully identified 53 bugs originated from syzbot that are likely exploitable on downstream distributions, surpassing the mere 5 bugs that were turned into real-world exploits among 5,000 upstream bugs from syzbot. Notably, to validate the results, we successfully exploited 5 additional bugs that were previously not known to be exploitable publicly.

View More Papers

AdvCAPTCHA: Creating Usable and Secure Audio CAPTCHA with Adversarial...

Hao-Ping (Hank) Lee (Carnegie Mellon University), Wei-Lun Kao (National Taiwan University), Hung-Jui Wang (National Taiwan University), Ruei-Che Chang (University of Michigan), Yi-Hao Peng (Carnegie Mellon University), Fu-Yin Cherng (National Chung Cheng University), Shang-Tse Chen (National Taiwan University)

Read More

Understanding and Analyzing Appraisal Systems in the Underground Marketplaces

Zhengyi Li (Indiana University Bloomington), Xiaojing Liao (Indiana University Bloomington)

Read More

GhostType: The Limits of Using Contactless Electromagnetic Interference to...

Qinhong Jiang (Zhejiang University), Yanze Ren (Zhejiang University), Yan Long (University of Michigan), Chen Yan (Zhejiang University), Yumai Sun (University of Michigan), Xiaoyu Ji (Zhejiang University), Kevin Fu (Northeastern University), Wenyuan Xu (Zhejiang University)

Read More

LiDAR Spoofing Meets the New-Gen: Capability Improvements, Broken Assumptions,...

Takami Sato (University of California, Irvine), Yuki Hayakawa (Keio University), Ryo Suzuki (Keio University), Yohsuke Shiiki (Keio University), Kentaro Yoshioka (Keio University), Qi Alfred Chen (University of California, Irvine)

Read More