Parinya Ekparinya (University of Sydney), Vincent Gramoli (University of Sydney and CSIRO-Data61), Guillaume Jourjon (CSIRO-Data61)

The vulnerability of traditional blockchains have been demonstrated at multiple occasions. Various companies are now moving towards Proof-of-Authority (PoA) blockchains with more conventional Byzantine fault tolerance, where a known set of n permissioned sealers, among which no more than t are Byzantine, seal blocks that include user transactions. Despite their wide adoption, these protocols were not proved correct.

In this paper, we present the Cloning Attack against the two mostly deployed PoA implementations of Ethereum, namely Aura and Clique. The Cloning Attack consists of one sealer cloning its pair of public-private keys into two distinct Ethereum instances that communicate with distinct groups of sealers. To identify their vulnerabilities, we first specify the corresponding algorithms. We then deploy one testnet for each protocol and demonstrate the success of the attack with only one Byzantine sealer. Finally, we propose counter-measures that prevent an adversary from double spending and introduce the necessary number of sealers needed to decide a block depending on n and t for both Aura and Clique to be safe.

View More Papers

Mind the Portability: A Warriors Guide through Realistic Profiled...

Shivam Bhasin (Nanyang Technological University), Anupam Chattopadhyay (Nanyang Technological University), Annelie Heuser (Univ Rennes, Inria, CNRS, IRISA), Dirmanto Jap (Nanyang Technological University), Stjepan Picek (Delft University of Technology), Ritu Ranjan Shrivastwa (Secure-IC)

Read More

Are You Going to Answer That? Measuring User Responses...

Imani N. Sherman (University of Florida), Jasmine D. Bowers (University of Florida), Keith McNamara Jr. (University of Florida), Juan E. Gilbert (University of Florida), Jaime Ruiz (University of Florida), Patrick Traynor (University of Florida)

Read More

DeepBinDiff: Learning Program-Wide Code Representations for Binary Diffing

Yue Duan (Cornell University), Xuezixiang Li (UC Riverside), Jinghan Wang (UC Riverside), Heng Yin (UC Riverside)

Read More

Finding Safety in Numbers with Secure Allegation Escrows

Venkat Arun (Massachusetts Institute of Technology), Aniket Kate (Purdue University), Deepak Garg (Max Planck Institute for Software Systems), Peter Druschel (Max Planck Institute for Software Systems), Bobby Bhattacharjee (University of Maryland)

Read More