Michael Troncoso (Naval Postgraduate School), Britta Hale (Naval Postgraduate School)

In this paper, we computationally analyze Passkey Entry in its entirety as a cryptographic authenticated key exchange (AKE) -- including user-protocol interactions that are typically ignored as out-of-band. To achieve this, we model the user-to-device channels, as well as the typical device-to-device channel, and adversarial control scenarios in both cases. In particular, we separately capture adversarial control of device displays on the initiating and responding devices as well as adversarial control of user input mechanisms using what we call a CYBORG model. The CYBORG model enables realistic real-world security analysis in light of published attacks on user-mediated protocols such as Bluetooth that leverage malware and device displays. In light of this, we show that all versions of Passkey Entry fail to provide security in our model. Finally, we demonstrate how slight modifications to the protocol would allow it to achieve stronger security guarantees for all current variants of passkey generation, as well as a newly proposed twofold mode of generation we term Dual Passkey Entry. These proof-of-concept modifications point to improved design approaches for user-mediated protocols. Finally, this work points to categories of vulnerabilities, based on compromise type, that could be exploited in Bluetooth Passkey Entry.

View More Papers

MINOS: A Lightweight Real-Time Cryptojacking Detection System

Faraz Naseem (Florida International University), Ahmet Aris (Florida International University), Leonardo Babun (Florida International University), Ege Tekiner (Florida International University), A. Selcuk Uluagac (Florida International University)

Read More

Let’s Stride Blindfolded in a Forest: Sublinear Multi-Client Decision...

Jack P. K. Ma (The Chinese University of Hong Kong), Raymond K. H. Tai (The Chinese University of Hong Kong), Yongjun Zhao (Nanyang Technological University), Sherman S.M. Chow (The Chinese University of Hong Kong)

Read More

Sn4ke: Practical Mutation Analysis of Tests at Binary Level

Mohsen Ahmadi (Arizona State University), Pantea Kiaei (Worcester Polytechnic Institute), Navid Emamdoost (University of Minnesota)

Read More

SOK: An Evaluation of Quantum Authentication Through Systematic Literature...

Ritajit Majumdar (Indian Statistical Institute), Sanchari Das (University of Denver)

Read More