Arjun Arunasalam (Purdue University), Andrew Chu (University of Chicago), Muslum Ozgur Ozmen (Purdue University), Habiba Farrukh (University of California, Irvine), Z. Berkay Celik (Purdue University)

The impact of e-commerce on today’s society is a global phenomenon. Given the increased demand for online purchases of items, e-commerce platforms often defer item sales to third-party sellers. A number of these sellers are dropshippers, sellers acting as middlemen who fulfill their customers’ orders through third-party suppliers. While this allows customers to access more products on e-commerce sites, we uncover that abusive dropshippers, who exploit the standard permitted dropshipping model, exist, deceiving customers, and damaging other e-commerce sellers. In this paper, we present the first comprehensive study on the characterization of abusive dropshippers and uncover harmful strategies they use to list items and evade account suspension on e-commerce marketplaces. We crawled the web to discover online forums, instructional material, and software used by the abusive dropshipping community. We inductively code forum threads and instructional material and read software documentation, installing when possible, to create an end-to-end lifecycle of this abuse. We also identify exploitative strategies abusive dropshippers use to ensure persistence on platforms. We then interviewed six individuals experienced in e-commerce (legal consultants and sellers) and developed an understanding of how abusive dropshipping harms customers and sellers. Through this, we present five characteristics that warrant future investigation into automated detection of abusive dropshippers on e-commerce platforms. Our efforts present a comprehensive view of how abusive dropshippers operate and how sellers and consumers interact with them, providing a framework to motivate future investigations into countering these harmful operations.

View More Papers

PrintListener: Uncovering the Vulnerability of Fingerprint Authentication via the...

Man Zhou (Huazhong University of Science and Technology), Shuao Su (Huazhong University of Science and Technology), Qian Wang (Wuhan University), Qi Li (Tsinghua University), Yuting Zhou (Huazhong University of Science and Technology), Xiaojing Ma (Huazhong University of Science and Technology), Zhengxiong Li (University of Colorado Denver)

Read More

HistCAN: A real-time CAN IDS with enhanced historical traffic...

Shuguo Zhuo, Nuo Li, Kui Ren (The State Key Laboratory of Blockchain and Data Security, Zhejiang University)

Read More

ORL-AUDITOR: Dataset Auditing in Offline Deep Reinforcement Learning

Linkang Du (Zhejiang University), Min Chen (CISPA Helmholtz Center for Information Security), Mingyang Sun (Zhejiang University), Shouling Ji (Zhejiang University), Peng Cheng (Zhejiang University), Jiming Chen (Zhejiang University), Zhikun Zhang (CISPA Helmholtz Center for Information Security and Stanford University)

Read More

From Interaction to Independence: zkSNARKs for Transparent and Non-Interactive...

Shahriar Ebrahimi (IDEAS-NCBR), Parisa Hassanizadeh (IDEAS-NCBR)

Read More