Boladji Vinny Adjibi (Georgia Tech), Athanasios Avgetidis (Georgia Tech), Manos Antonakakis (Georgia Tech), Michael Bailey (Georgia Tech), Fabian Monrose (Georgia Tech)

Using orthographic, phonetic, and semantic models, we study the prevalence of defensive registrations related to a wide spectrum of transformations of the base domain names of Fortune 500 companies. As part of a large-scale evaluation, we explore several questions aimed at (a) understanding whether there are explainable factors (e.g., the size of the company's security team or its domain name's popularity rank) that correlate with a company's level of engagement regarding defensive registrations; (b) identifying the main actors in the defensive registration ecosystem that Fortune 500 companies rely upon; (c) uncovering the strategies used by these actors, and d) assessing the efficacy of those strategies from the perspective of queries emanating from a large Internet Service Provider (ISP).

Overall, we identified 19,523 domain names defensively registered by 447 Fortune 500 companies. These companies engage in defensive registrations sparingly, with almost 200 companies having fewer than ten defensive registrations. By analyzing the registrations, we found many similarities between the types of domain names the companies registered. For instance, they all registered many TLD-squatting domain names. As it turns out, those similarities are due to the companies' reliance on online brand protection (OBP) service providers to protect their brands. Our analysis of the efficacy of the strategies of those OBPs showed that they register domain names that receive most of the potential squatting traffic. Using regression models, we learned from those strategies to provide recommendations for future defensive registrants. Our measurement also revealed many domain names that received high proportions of traffic over long periods of time and could be registered for only 15 USD. To prevent the abusive use of such domain names, we recommend that OBP providers proactively leverage passive DNS data to identify and preemptively register highly queried available domain names.

View More Papers

On the Robustness of LDP Protocols for Numerical Attributes...

Xiaoguang Li (Xidian University, Purdue University), Zitao Li (Alibaba Group (U.S.) Inc.), Ninghui Li (Purdue University), Wenhai Sun (Purdue University, West Lafayette, USA)

Read More

Reinforcement Unlearning

Dayong Ye (University of Technology Sydney), Tianqing Zhu (City University of Macau), Congcong Zhu (City University of Macau), Derui Wang (CSIRO’s Data61), Kun Gao (University of Technology Sydney), Zewei Shi (CSIRO’s Data61), Sheng Shen (Torrens University Australia), Wanlei Zhou (City University of Macau), Minhui Xue (CSIRO's Data61)

Read More

VoiceRadar: Voice Deepfake Detection using Micro-Frequency and Compositional Analysis

Kavita Kumari (Technical University of Darmstadt), Maryam Abbasihafshejani (University of Texas at San Antonio), Alessandro Pegoraro (Technical University of Darmstadt), Phillip Rieger (Technical University of Darmstadt), Kamyar Arshi (Technical University of Darmstadt), Murtuza Jadliwala (University of Texas at San Antonio), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More

”Who is Trying to Access My Account?” Exploring User...

Tongxin Wei (Nankai University), Ding Wang (Nankai University), Yutong Li (Nankai University), Yuehuan Wang (Nankai University)

Read More