Elijah Bouma-Sims (Carnegie Mellon University), Lily Klucinec (Carnegie Mellon University), Mandy Lanyon (Carnegie Mellon University), Julie Downs (Carnegie Mellon University), Lorrie Faith Cranor (Carnegie Mellon University)

Fraudsters often use the promise of free goods as a lure for victims who are convinced to complete online tasks but ultimately receive nothing. Despite much work characterizing these "giveaway scams," no human subjects research has investigated how users interact with them or what factors impact victimization. We conducted a scenario-based experiment with a sample of American teenagers (n = 85) and adult crowd workers (n = 205) in order to investigate how users reason about and interact with giveaway scams advertised in YouTube videos and to determine whether teens are more susceptible than adults. We found that most participants recognized the fraudulent nature of the videos, with only 9.2% believing the scam videos offered legitimate deals. Teenagers did not fall victim to the scams more frequently than adults but reported more experience searching for terms that could lead to victimization. This study is among the first to compare the interactions of adult and teenage users with internet fraud and sheds light on an understudied area of social engineering.

View More Papers

Crosstalk-induced Side Channel Threats in Multi-Tenant NISQ Computers

Ruixuan Li (Choudhury), Chaithanya Naik Mude (University of Wisconsin-Madison), Sanjay Das (The University of Texas at Dallas), Preetham Chandra Tikkireddi (University of Wisconsin-Madison), Swamit Tannu (University of Wisconsin, Madison), Kanad Basu (University of Texas at Dallas)

Read More

Distributed Function Secret Sharing and Applications

Pengzhi Xing (University of Electronic Science and Technology of China), Hongwei Li (University of Electronic Science and Technology of China), Meng Hao (Singapore Management University), Hanxiao Chen (University of Electronic Science and Technology of China), Jia Hu (University of Electronic Science and Technology of China), Dongxiao Liu (University of Electronic Science and Technology of China)

Read More

SecuWear: Secure Data Sharing Between Wearable Devices

Sujin Han (KAIST) Diana A. Vasile (Nokia Bell Labs), Fahim Kawsar (Nokia Bell Labs, University of Glasgow), Chulhong Min (Nokia Bell Labs)

Read More

Delay-allowed Differentially Private Data Stream Release

Xiaochen Li (University of Virginia), Zhan Qin (Zhejiang University), Kui Ren (Zhejiang University), Chen Gong (University of Virginia), Shuya Feng (University of Connecticut), Yuan Hong (University of Connecticut), Tianhao Wang (University of Virginia)

Read More