Elijah Bouma-Sims (Carnegie Mellon University), Lily Klucinec (Carnegie Mellon University), Mandy Lanyon (Carnegie Mellon University), Julie Downs (Carnegie Mellon University), Lorrie Faith Cranor (Carnegie Mellon University)

Fraudsters often use the promise of free goods as a lure for victims who are convinced to complete online tasks but ultimately receive nothing. Despite much work characterizing these "giveaway scams," no human subjects research has investigated how users interact with them or what factors impact victimization. We conducted a scenario-based experiment with a sample of American teenagers (n = 85) and adult crowd workers (n = 205) in order to investigate how users reason about and interact with giveaway scams advertised in YouTube videos and to determine whether teens are more susceptible than adults. We found that most participants recognized the fraudulent nature of the videos, with only 9.2% believing the scam videos offered legitimate deals. Teenagers did not fall victim to the scams more frequently than adults but reported more experience searching for terms that could lead to victimization. This study is among the first to compare the interactions of adult and teenage users with internet fraud and sheds light on an understudied area of social engineering.

View More Papers

SketchFeature: High-Quality Per-Flow Feature Extractor Towards Security-Aware Data Plane

Sian Kim (Ewha Womans University), Seyed Mohammad Mehdi Mirnajafizadeh (Wayne State University), Bara Kim (Korea University), Rhongho Jang (Wayne State University), DaeHun Nyang (Ewha Womans University)

Read More

The State of https Adoption on the Web

Christoph Kerschbaumer (Mozilla Corporation), Frederik Braun (Mozilla Corporation), Simon Friedberger (Mozilla Corporation), Malte Jürgens (Mozilla Corporation)

Read More

Secure IP Address Allocation at Cloud Scale

Eric Pauley (University of Wisconsin–Madison), Kyle Domico (University of Wisconsin–Madison), Blaine Hoak (University of Wisconsin–Madison), Ryan Sheatsley (University of Wisconsin–Madison), Quinn Burke (University of Wisconsin–Madison), Yohan Beugin (University of Wisconsin–Madison), Engin Kirda (Northeastern University), Patrick McDaniel (University of Wisconsin–Madison)

Read More

BitShield: Defending Against Bit-Flip Attacks on DNN Executables

Yanzuo Chen (The Hong Kong University of Science and Technology), Yuanyuan Yuan (The Hong Kong University of Science and Technology), Zhibo Liu (The Hong Kong University of Science and Technology), Sihang Hu (Huawei Technologies), Tianxiang Li (Huawei Technologies), Shuai Wang (The Hong Kong University of Science and Technology)

Read More