Ayomide Akinsanya (Stevens Institute of Technology), Tegan Brennan (Stevens Institute of Technology)

Current machine learning systems offer great predictive power but also require significant computational resources. As a result, the promise of a class of optimized machine learning models, called adaptive neural networks (ADNNs), has seen recent wide appeal. These models make dynamic decisions about the amount of computation to perform based on the given input, allowing for fast predictions on ”easy” input. While various considerations of ADNNs have been extensively researched, how these input-dependent optimizations might introduce vulnerabilities has been hitherto under-explored. Our work is the first to demonstrate and evaluate timing channels due to the optimizations of ADNNs with the capacity to leak sensitive attributes about a user’s input. We empirically study six ADNNs types and demonstrate how an attacker can significantly improve their ability to infer sensitive attributes, such as class label, of another user’s input from an observed timing measurement. Our results show that timing information can increase an attacker’s probability of correctly inferring the attribute of the user’s input by up to a factor of 9.89x. Our empirical evaluation uses four different datasets, including those containing sensitive medical and demographic information, and considers leakage across a variety of sensitive attributes of the user's input. We conclude by demonstrating how timing channels can be exploited across the public internet in two fictitious web applications — Fictitious Health Company and Fictitious HR — that makes use of ADNNs for serving predictions to their clients.

View More Papers

Separation is Good: A Faster Order-Fairness Byzantine Consensus

Ke Mu (Southern University of Science and Technology, China), Bo Yin (Changsha University of Science and Technology, China), Alia Asheralieva (Loughborough University, UK), Xuetao Wei (Southern University of Science and Technology, China & Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, SUSTech, China)

Read More

ORL-AUDITOR: Dataset Auditing in Offline Deep Reinforcement Learning

Linkang Du (Zhejiang University), Min Chen (CISPA Helmholtz Center for Information Security), Mingyang Sun (Zhejiang University), Shouling Ji (Zhejiang University), Peng Cheng (Zhejiang University), Jiming Chen (Zhejiang University), Zhikun Zhang (CISPA Helmholtz Center for Information Security and Stanford University)

Read More

Architecting Trigger-Action Platforms for Security, Performance and Functionality

Deepak Sirone Jegan (University of Wisconsin-Madison), Michael Swift (University of Wisconsin-Madison), Earlence Fernandes (University of California San Diego)

Read More