Ayomide Akinsanya (Stevens Institute of Technology), Tegan Brennan (Stevens Institute of Technology)

Current machine learning systems offer great predictive power but also require significant computational resources. As a result, the promise of a class of optimized machine learning models, called adaptive neural networks (ADNNs), has seen recent wide appeal. These models make dynamic decisions about the amount of computation to perform based on the given input, allowing for fast predictions on ”easy” input. While various considerations of ADNNs have been extensively researched, how these input-dependent optimizations might introduce vulnerabilities has been hitherto under-explored. Our work is the first to demonstrate and evaluate timing channels due to the optimizations of ADNNs with the capacity to leak sensitive attributes about a user’s input. We empirically study six ADNNs types and demonstrate how an attacker can significantly improve their ability to infer sensitive attributes, such as class label, of another user’s input from an observed timing measurement. Our results show that timing information can increase an attacker’s probability of correctly inferring the attribute of the user’s input by up to a factor of 9.89x. Our empirical evaluation uses four different datasets, including those containing sensitive medical and demographic information, and considers leakage across a variety of sensitive attributes of the user's input. We conclude by demonstrating how timing channels can be exploited across the public internet in two fictitious web applications — Fictitious Health Company and Fictitious HR — that makes use of ADNNs for serving predictions to their clients.

View More Papers

Towards Precise Reporting of Cryptographic Misuses

Yikang Chen (The Chinese University of Hong Kong), Yibo Liu (Arizona State University), Ka Lok Wu (The Chinese University of Hong Kong), Duc V Le (Visa Research), Sze Yiu Chau (The Chinese University of Hong Kong)

Read More

PrintListener: Uncovering the Vulnerability of Fingerprint Authentication via the...

Man Zhou (Huazhong University of Science and Technology), Shuao Su (Huazhong University of Science and Technology), Qian Wang (Wuhan University), Qi Li (Tsinghua University), Yuting Zhou (Huazhong University of Science and Technology), Xiaojing Ma (Huazhong University of Science and Technology), Zhengxiong Li (University of Colorado Denver)

Read More

Symphony: Path Validation at Scale

Anxiao He (Zhejiang University), Jiandong Fu (Zhejiang University), Kai Bu (Zhejiang University), Ruiqi Zhou (Zhejiang University), Chenlu Miao (Zhejiang University), Kui Ren (Zhejiang University)

Read More

SENSE: Enhancing Microarchitectural Awareness for TEEs via Subscription-Based Notification

Fan Sang (Georgia Institute of Technology), Jaehyuk Lee (Georgia Institute of Technology), Xiaokuan Zhang (George Mason University), Meng Xu (University of Waterloo), Scott Constable (Intel), Yuan Xiao (Intel), Michael Steiner (Intel), Mona Vij (Intel), Taesoo Kim (Georgia Institute of Technology)

Read More