Martin Unterguggenberger (Graz University of Technology), Lukas Lamster (Graz University of Technology), David Schrammel (Graz University of Technology), Martin Schwarzl (Cloudflare, Inc.), Stefan Mangard (Graz University of Technology)

Efficient cloud computing relies on in-process isolation to optimize performance by running workloads within a single process. Without heavy-weight process isolation, memory safety errors pose a significant security threat by allowing an adversary to extract or corrupt the private data of other co-located tenants. Existing in-process isolation mechanisms are not suitable for modern cloud requirements, e.g., MPK’s 16 protection domains are insufficient to isolate thousands of cloud workers per process. Consequently, cloud service providers have a strong need for lightweight in-process isolation on commodity x86 machines.

This paper presents TME-Box, a novel isolation technique that enables fine-grained and scalable sandboxing on commodity x86 CPUs. By repurposing Intel TME-MK, which is intended for the encryption of virtual machines, TME-Box offers lightweight and efficient in-process isolation. TME-Box enforces that sandboxes use their designated encryption keys for memory interactions through compiler instrumentation. This cryptographic isolation enables fine-grained access control, from single cache lines to full pages, and supports flexible data relocation. In addition, the design of TME-Box allows the efficient isolation of up to 32K concurrent sandboxes. We present a performance-optimized TME-Box prototype, utilizing x86 segment-based addressing, that showcases geomean performance overheads of 5.2 % for data isolation and 9.7 % for code and data isolation, evaluated with the SPEC CPU2017 benchmark suite.

View More Papers

I know what you MEME! Understanding and Detecting Harmful...

Yong Zhuang (Wuhan University), Keyan Guo (University at Buffalo), Juan Wang (Wuhan University), Yiheng Jing (Wuhan University), Xiaoyang Xu (Wuhan University), Wenzhe Yi (Wuhan University), Mengda Yang (Wuhan University), Bo Zhao (Wuhan University), Hongxin Hu (University at Buffalo)

Read More

SCRUTINIZER: Towards Secure Forensics on Compromised TrustZone

Yiming Zhang (Southern University of Science and Technology and The Hong Kong Polytechnic University), Fengwei Zhang (Southern University of Science and Technology), Xiapu Luo (The Hong Kong Polytechnic University), Rui Hou (Institute of Information Engineering, Chinese Academy of Sciences), Xuhua Ding (Singapore Management University), Zhenkai Liang (National University of Singapore), Shoumeng Yan (Ant Group), Tao…

Read More

On the Realism of LiDAR Spoofing Attacks against Autonomous...

Takami Sato (University of California, Irvine), Ryo Suzuki (Keio University), Yuki Hayakawa (Keio University), Kazuma Ikeda (Keio University), Ozora Sako (Keio University), Rokuto Nagata (Keio University), Ryo Yoshida (Keio University), Qi Alfred Chen (University of California, Irvine), Kentaro Yoshioka (Keio University)

Read More

SecuWear: Secure Data Sharing Between Wearable Devices

Sujin Han (KAIST) Diana A. Vasile (Nokia Bell Labs), Fahim Kawsar (Nokia Bell Labs, University of Glasgow), Chulhong Min (Nokia Bell Labs)

Read More