Hengkai Ye (The Pennsylvania State University), Hong Hu (The Pennsylvania State University)

Code injection was a favored technique for attackers to exploit buffer overflow vulnerabilities decades ago. Subsequently, the widespread adoption of lightweight solutions like write-xor-execute (W⊕X) effectively mitigated most of these attacks by disallowing writable-and-executable memory. However, we observe multiple concerning cases where software developers accidentally disabled W⊕X and reintroduced executable stacks to popular applications. Although each violation has been properly fixed, a lingering question remains: what underlying factors contribute to these recurrent mistakes among developers, even in contemporary software development practices?

In this paper, we conduct two investigations to gain a comprehensive understanding of the challenges associated with properly enforcing W⊕X in Linux systems. First, we delve into program-hardening tools to assess whether experienced security developers consistently catch the necessary steps to avoid executable stacks. Second, we analyze the enforcement of W⊕X on Linux by inspecting the source code of the compilation toolchain, the kernel, and the loader. Our investigation reveals that properly enforcing W⊕X on Linux requires close collaboration among multiple components. These tools form a complex chain of trust and dependency to safeguard the program stack. However, developers, including security researchers, may overlook the subtle yet essential .note.GNU-stack section when writing assembly code for various purposes, and inadvertently introduce executable stacks. For example, 11 program-hardening tools implemented as inlined reference monitors (IRM) introduce executable stacks to all “hardened” applications. Based on these findings, we discuss potential exploitation scenarios by attackers and provide suggestions to mitigate this issue.

View More Papers

I Know What You Asked: Prompt Leakage via KV-Cache...

Guanlong Wu (Southern University of Science and Technology), Zheng Zhang (ByteDance Inc.), Yao Zhang (ByteDance Inc.), Weili Wang (Southern University of Science and Technolog), Jianyu Niu (Southern University of Science and Technolog), Ye Wu (ByteDance Inc.), Yinqian Zhang (Southern University of Science and Technology (SUSTech))

Read More

DUMPLING: Fine-grained Differential JavaScript Engine Fuzzing

Liam Wachter (EPFL), Julian Gremminger (EPFL), Christian Wressnegger (Karlsruhe Institute of Technology (KIT)), Mathias Payer (EPFL), Flavio Toffalini (EPFL)

Read More

Privacy Preserved Integrated Big Data Analytics Framework Using Federated...

Sarah Kaleem (Prince Sultan University, PSU) Awais Ahmad (Imam Mohammad Ibn Saud Islamic University, IMSIU), Muhammad Babar (Prince Sultan University, PSU), Goutham Reddy Alavalapati (University of Illinois, Springfield)

Read More

Unleashing the Power of Generative Model in Recovering Variable...

Xiangzhe Xu (Purdue University), Zhuo Zhang (Purdue University), Zian Su (Purdue University), Ziyang Huang (Purdue University), Shiwei Feng (Purdue University), Yapeng Ye (Purdue University), Nan Jiang (Purdue University), Danning Xie (Purdue University), Siyuan Cheng (Purdue University), Lin Tan (Purdue University), Xiangyu Zhang (Purdue University)

Read More