Yikang Chen (The Chinese University of Hong Kong), Yibo Liu (Arizona State University), Ka Lok Wu (The Chinese University of Hong Kong), Duc V Le (Visa Research), Sze Yiu Chau (The Chinese University of Hong Kong)

In the last decade, a series of papers were published on using static analysis to detect cryptographic API misuse. In each paper, apps are checked against a set of rules to see if violations exist. A common theme among these papers is that rule violations are plentiful, often at the scale of thousands. Interestingly, while much effort went into tackling false negatives, curiously, not much has been said on (1) whether the misuse alarms are indeed correct and meaningful, and (2) what can future work improve upon apart from finding more misuses.

In this paper, we take a deep dive into the rule violations reported by various academic papers as well as the rules, models and implementations of their detectors, in an attempt to (1) explain the gap between their misuse alarms and actual vulnerabilities, and (2) shed light on possible directions for improving the precision and usability of misuse detectors. Results of our analysis suggest that the small-scale inspections done by previous work had some unfortunate blind-spots, leaving problems in their rules, models, and implementations unnoticed, which in turn led to unnecessary overestimation of misuses (and vulnerabilities). To facilitate future research on the topic, we distill these avoidable false alarms into high-level patterns that capture their root causes, and discuss design, evaluation and reporting strategies that can improve the precision of misuse findings. Furthermore, to demonstrate the generalizability of these false alarm patterns and improvement directions, we also investigate a popular industry detector and a dynamic detector, and discuss how some of the false alarm patterns do and do not apply to them. Our findings suggest that the problem of precisely reporting cryptographic misuses still has much room for future work to improve upon.

View More Papers

Securing EV charging system against Physical-layer Signal Injection Attack...

Soyeon Son (Korea University) Kyungho Joo (Korea University) Wonsuk Choi (Korea University) Dong Hoon Lee (Korea University)

Read More

MOCK: Optimizing Kernel Fuzzing Mutation with Context-aware Dependency

Jiacheng Xu (Zhejiang University), Xuhong Zhang (Zhejiang University), Shouling Ji (Zhejiang University), Yuan Tian (UCLA), Binbin Zhao (Georgia Institute of Technology), Qinying Wang (Zhejiang University), Peng Cheng (Zhejiang University), Jiming Chen (Zhejiang University)

Read More

The CURE to Vulnerabilities in RPKI Validation

Donika Mirdita (Technische Universität Darmstadt), Haya Schulmann (Goethe-Universität Frankfurt), Niklas Vogel (Goethe-Universität Frankfurt), Michael Waidner (Technische Universität Darmstadt, Fraunhofer SIT)

Read More

When Cryptography Needs a Hand: Practical Post-Quantum Authentication for...

Geoff Twardokus (Rochester Institute of Technology), Nina Bindel (SandboxAQ), Hanif Rahbari (Rochester Institute of Technology), Sarah McCarthy (University of Waterloo)

Read More