Yan Pang (University of Virginia), Aiping Xiong (Penn State University), Yang Zhang (CISPA Helmholtz Center for Information Security), Tianhao Wang (University of Virginia)

Video generation models (VGMs) have demonstrated the capability to synthesize high-quality output. It is important to understand their potential to produce unsafe content, such as violent or terrifying videos. In this work, we provide a comprehensive understanding of unsafe video generation.

First, to confirm the possibility that these models could indeed generate unsafe videos, we choose unsafe content generation prompts collected from 4chan and Lexica, and three open-source SOTA VGMs to generate unsafe videos.
After filtering out duplicates and poorly generated content, we created an initial set of $2112$ unsafe videos from an original pool of $5607$ videos. Through clustering and thematic coding analysis of these generated videos, we identify $5$ unsafe video categories: textit{Distorted/Weird}, textit{Terrifying}, textit{Pornographic}, textit{Violent/Bloody}, and textit{Political}. With IRB approval, we then recruit online participants to help label the generated videos. Based on the annotations submitted by $403$ participants, we identified $937$ unsafe videos from the initial video set. With the labeled information and the corresponding prompts, we created the first dataset of unsafe videos generated by VGMs.

We then study possible defense mechanisms to prevent the generation of unsafe videos. Existing defense methods in image generation focus on filtering either input prompt or output results. We propose a new approach called fullsysname (sysname), which works within the model’s internal sampling process. sysname can achieve $0.90$ defense accuracy while reducing time and computing resources by $10times$ when sampling a large number of unsafe prompts. Our experiment includes three open-source SOTA video diffusion models, each achieving accuracy rates of $0.99$, $0.92$, and $0.91$, respectively. Additionally, our method was tested with adversarial prompts and on image-to-video diffusion models, and achieved nearly $1.0$ accuracy on both settings. Our method also shows its interoperability by improving the performance of other defenses when combined with them.

View More Papers

Automatic Library Fuzzing through API Relation Evolvement

Jiayi Lin (The University of Hong Kong), Qingyu Zhang (The University of Hong Kong), Junzhe Li (The University of Hong Kong), Chenxin Sun (The University of Hong Kong), Hao Zhou (The Hong Kong Polytechnic University), Changhua Luo (The University of Hong Kong), Chenxiong Qian (The University of Hong Kong)

Read More

SafeSplit: A Novel Defense Against Client-Side Backdoor Attacks in...

Phillip Rieger (Technical University of Darmstadt), Alessandro Pegoraro (Technical University of Darmstadt), Kavita Kumari (Technical University of Darmstadt), Tigist Abera (Technical University of Darmstadt), Jonathan Knauer (Technical University of Darmstadt), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More

EMIRIS: Eavesdropping on Iris Information via Electromagnetic Side Channel

Wenhao Li (Shandong University), Jiahao Wang (Shandong University), Guoming Zhang (Shandong University), Yanni Yang (Shandong University), Riccardo Spolaor (Shandong University), Xiuzhen Cheng (Shandong University), Pengfei Hu (Shandong University)

Read More