Xiaoyuan Wu (Carnegie Mellon University), Lydia Hu (Carnegie Mellon University), Eric Zeng (Carnegie Mellon University), Hana Habib (Carnegie Mellon University), Lujo Bauer (Carnegie Mellon University)

Apple's App Privacy Report (``privacy report''), released in 2021, aims to
inform iOS users about apps' access to their data and sensors (e.g., contacts,
camera) and, unlike other privacy dashboards, what domains are contacted by apps and websites. To evaluate the
effectiveness of the privacy report, we conducted semi-structured interviews
(textit{n} = 20) to examine users' reactions to the information, their understanding of relevant privacy
implications, and how they might change
their behavior to address privacy concerns. Participants easily understood which
apps accessed data and sensors at certain times on their phones, and knew how to
remove an app's permissions in case of unexpected access. In contrast,
participants had difficulty understanding apps' and websites' network
activities. They were confused about how and why network activities occurred,
overwhelmed by the number of domains their apps contacted, and uncertain about
what remedial actions they could take against potential privacy threats. While
the privacy report and similar tools can increase transparency by presenting
users with details about how their data is handled, we recommend providing more
interpretation or aggregation of technical details, such as the purpose of
contacting domains, to help users make informed decisions.

View More Papers

Cross-Origin Web Attacks via HTTP/2 Server Push and Signed...

Pinji Chen (Tsinghua University), Jianjun Chen (Tsinghua University & Zhongguancun Laboratory), Mingming Zhang (Zhongguancun Laboratory), Qi Wang (Tsinghua University), Yiming Zhang (Tsinghua University), Mingwei Xu (Tsinghua University), Haixin Duan (Tsinghua University)

Read More

VoiceRadar: Voice Deepfake Detection using Micro-Frequency and Compositional Analysis

Kavita Kumari (Technical University of Darmstadt), Maryam Abbasihafshejani (University of Texas at San Antonio), Alessandro Pegoraro (Technical University of Darmstadt), Phillip Rieger (Technical University of Darmstadt), Kamyar Arshi (Technical University of Darmstadt), Murtuza Jadliwala (University of Texas at San Antonio), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More

Try to Poison My Deep Learning Data? Nowhere to...

Yansong Gao (The University of Western Australia), Huaibing Peng (Nanjing University of Science and Technology), Hua Ma (CSIRO's Data61), Zhi Zhang (The University of Western Australia), Shuo Wang (Shanghai Jiao Tong University), Rayne Holland (CSIRO's Data61), Anmin Fu (Nanjing University of Science and Technology), Minhui Xue (CSIRO's Data61), Derek Abbott (The University of Adelaide, Australia)

Read More

Crosstalk-induced Side Channel Threats in Multi-Tenant NISQ Computers

Ruixuan Li (Choudhury), Chaithanya Naik Mude (University of Wisconsin-Madison), Sanjay Das (The University of Texas at Dallas), Preetham Chandra Tikkireddi (University of Wisconsin-Madison), Swamit Tannu (University of Wisconsin, Madison), Kanad Basu (University of Texas at Dallas)

Read More