Xiaoyuan Wu (Carnegie Mellon University), Lydia Hu (Carnegie Mellon University), Eric Zeng (Carnegie Mellon University), Hana Habib (Carnegie Mellon University), Lujo Bauer (Carnegie Mellon University)

Apple's App Privacy Report (``privacy report''), released in 2021, aims to
inform iOS users about apps' access to their data and sensors (e.g., contacts,
camera) and, unlike other privacy dashboards, what domains are contacted by apps and websites. To evaluate the
effectiveness of the privacy report, we conducted semi-structured interviews
(textit{n} = 20) to examine users' reactions to the information, their understanding of relevant privacy
implications, and how they might change
their behavior to address privacy concerns. Participants easily understood which
apps accessed data and sensors at certain times on their phones, and knew how to
remove an app's permissions in case of unexpected access. In contrast,
participants had difficulty understanding apps' and websites' network
activities. They were confused about how and why network activities occurred,
overwhelmed by the number of domains their apps contacted, and uncertain about
what remedial actions they could take against potential privacy threats. While
the privacy report and similar tools can increase transparency by presenting
users with details about how their data is handled, we recommend providing more
interpretation or aggregation of technical details, such as the purpose of
contacting domains, to help users make informed decisions.

View More Papers

Rethink Custom Transformers for Binary Analysis

Heng Yin, Professor, Department of Computer Science and Engineering, University of California, Riverside

Read More

AlphaDog: No-Box Camouflage Attacks via Alpha Channel Oversight

Qi Xia (University of Texas at San Antonio), Qian Chen (University of Texas at San Antonio)

Read More

The Forking Way: When TEEs Meet Consensus

Annika Wilde (Ruhr University Bochum), Tim Niklas Gruel (Ruhr University Bochum), Claudio Soriente (NEC Laboratories Europe), Ghassan Karame (Ruhr University Bochum)

Read More

BULKHEAD: Secure, Scalable, and Efficient Kernel Compartmentalization with PKS

Yinggang Guo (State Key Laboratory for Novel Software Technology, Nanjing University; University of Minnesota), Zicheng Wang (State Key Laboratory for Novel Software Technology, Nanjing University), Weiheng Bai (University of Minnesota), Qingkai Zeng (State Key Laboratory for Novel Software Technology, Nanjing University), Kangjie Lu (University of Minnesota)

Read More